GOING UNDERGROUND ON CAMPUS:
Tapping the Earth for Clean, Efficient Heating and Cooling

A Guide to Geothermal Energy and Underground Buildings on Campus

By Stan Cross, David J. Eagan and Paul Tolmé with Julian Keniry and John Kelly
Foreword by Robert J. Koester

A comprehensive review of the strategies and steps to implement geothermal heating and cooling on campus, with best practices from U.S. colleges and universities.
GOING UNDERGROUND ON CAMPUS:

Tapping the Earth for Clean, Efficient Heating and Cooling

A Guide to Geothermal Energy and Underground Buildings on Campus

THE AUTHORS

Stan Cross is Education Director of the Environmental Leadership Center at Warren Wilson College (NC) where he leads campus sustainability and climate action initiatives. In 2007, Stan was recognized as North Carolina’s Environmental Educator of the Year.

David Eagan is an Outreach Specialist at the University of Wisconsin-Madison and Editor of the Climate and Sustainability Series for Campus Ecology.

Paul Tolmé is an environment, science and outdoors writer and former Ted Scripps Fellow in Environmental Journalism, based in California. His articles have appeared in National Wildlife magazine, ClimateEdu, and other national publications.

OTHER CONTRIBUTORS

John Kelly is Chief Operating Officer of Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry.

Julian Keniry is Senior Director of Campus and Community Leadership at the National Wildlife Federation and a co-founder of Campus Ecology and the Energy Action Coalition.

SPONSORS AND PARTNERS

Sponsors
• The Kendeda Fund

Partners
• APPA: Leadership in Educational Facilities
• Geothermal Energy Association (GEA)
• Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry

Other Partners
• Jobs for the Future http://www.jobsforthefuture.org
• Energy Action Coalition http://www.energyactioncoalition.org

If you have questions please call National Wildlife Federation at 703-438-6000 or 1-800-822-9919 or email Campus@nwf.org. And keep up with the latest at www.CampusEcology.org

If you choose to print this document, please minimize its carbon footprint by using chlorine-free, high post-consumer content paper (30% or higher), if possible. Please reuse or recycle the printed document and recycle your printer toner cartridges.

Design and production by Linda Rapp

© 2011 National Wildlife Federation

Permission is granted to copy with attribution and for noncommercial purposes only. Visit www.nwf.org

Project Coordinator: Cheli Cresswell
CONTENTS

Acknowledgments ...2
Staff List ..4
About Campus Ecology ..5
Overview ..5
NWR and Global Warming ..6
Foreword ..8
I. Introduction ...11
II. The Opportunities for Using Geothermal Technologies on Campus ..13
III. Review of Geothermal Technologies ..15
 1. Geothermal Heat Pumps – Nationwide possibilities ..16
 2. Aquifer Thermal Energy Storage – A promising geothermal frontier ..18
 3. Direct-Use Geothermal – Hot groundwater at the ready ..19
 4. Geothermal Electricity – A rising renewable energy star ..20
 5. Earth-Integrated Buildings – Life in the underground ...22
IV. Campus Case Studies – Geothermal Technologies in Practice ...24
 1. Geothermal Heat Pumps ...24
 A) Whole Campus Systems ...24
 B) Retrofits for Existing Buildings ...28
 C) Geothermal in New Buildings ...34
 2. Aquifer Thermal Energy Storage (ATES) ...39
 3. Lake-Source Cooling (a variation of pond/lake geothermal) ...39
 4. Hot Spots: Direct Use Geothermal and Electricity Generation ..40
 5. Earth-Integrated Buildings ...43
V. Geothermal Technologies on Campus: Present and Future ...48
 1. An Extraordinary Educational Opportunity ...48
 2. Expanding Career Pathways in Renewable Energy ..49
 3. Protecting Wildlife and the Environment ...50
VI. Appendices ...52
APPENDIX A
College and University Geothermal Systems – Completed or Under Construction52
APPENDIX B
Additional Resources on Geothermal Systems ..54
APPENDIX C
Earth-Integrated Campus Buildings – Completed or Under Construction ...56
APPENDIX D
Top Ten Reasons to Bury a Building ..60
APPENDIX E
Electricity-Generating Geothermal Technologies ...61
APPENDIX F ...62
Endnotes ..64
ACKNOWLEDGMENTS

The National Wildlife Federation thanks The Kendeda Fund for major support of this and other Campus Ecology projects.

We would like to express our appreciation to the following people for their input and support in developing this document:

Wendy Anderson, Director of Campus Sustainability, Associate Professor of Biology, Drury University (MO)
Careen Arsenault, Sustainability Administrator, Energy & Sustainability Facilities Services, Cornell University (NY)
Steve Bellona, Associate Vice President for Facilities and Planning, Hamilton College (NY)
David J. Bennett, Architect, DJB Architects, Ltd., New York, Minneapolis
Alaina Bernard, Land Manager, Landscape and Natural Resources, University of Central Florida
Suzanne Bergeron, Assistant Director for Operations, Bowdoin Art Museum, Bowdoin College (ME)
Robert R. Bland, Senior Director, Energy & Sustainability Facilities Services, Cornell University (NY)
Don Borkowski, Capital Projects Manager, Facilities Management, Bowdoin College (ME)
Kelly Boulton, Sustainability Coordinator, Allegheny College (PA)
Nick Boyd, Director of Facilities, Feather River College (CA)
Toni Boyd, Assistant Director, Geo-Heat Center, Oregon Institute of Technology
Julie Brown, Director of Media Relations, University of Oregon
Layne Cameron, Associate Director of University Communications, Ball State University (IN)
John Carmody, Director, Center for Sustainable Building Research, University of Minnesota
Ted Clutter, Vice President of Marketing, Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry
Calvin DeWitt, Professor of Environmental Studies, University of Wisconsin-Madison
Brian Dolan, Facilities Project Manager, Planning Design/Construction, University of Arizona
Thomas Downing, Senior Energy Manager, Yale University (CT)
Christina Erickson, Sustainability Director, Champlain College (VT)
G. Dodd Galbreath, Executive Director and Assistant Professor, Institute for Sustainable Practice, Lipscomb University (TN)
Nathan Gauthier, Assistant Director, Office of Sustainability, Harvard University (MA)
Karl Gawell, Executive Director, Geothermal Energy Association
Dan Gerth, Director of Business Development, MEP Associates, LLC, Eau Claire, WI
Steve Giauzner, Director of Knowledge Management, APPA
Loretta Hall, Author of “Underground Buildings”
Jennifer Hayward, Sustainability Coordinator, Lane Community College (OR)
Michael Hemmesch, Director of Media Relations, St. John’s University (MN)
Clare Hintz, Sustainability Coordinator, Northland College (WI)
Kim Holm, Public Relations Specialist, Oklahoma City Community College (OK)
Alison Holm, Assistant to the Executive Director, Geothermal Energy Association
Rob Holsten, Dean of Continuing Education & Sustainability, Wilson Community College (NC)
William Huqghins, Associate Director of Physical Plant, Construction, Hamilton College (NY)
Dan Jennejohn, Research Associate, Geothermal Energy Association
Richard R. Johnson, Director of Sustainability and Associate Director, Center for the Study of Environment and Society, Rice University (TX)
Leslie Johnston, Creative Director, External Relations-Marketing, University of Arizona
Cordell Jordan, Media Relations Coordinator, Oklahoma City Community College (OK)
Gary Jorgensen, Buildings & Facilities Manager, St. John’s University (MN)
John Kelly, Chief Operating Officer of Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry
Cynthia Klein-Banai, Associate Chancellor for Sustainability, University of Illinois-Chicago
Robert J. Koester, Professor of Architecture and Director of the Center for Energy Research, Education and Service, Ball State University (IN)
ACKNOWLEDGMENTS

Kevin Krebsbach, Associate Director of Planning and Construction, University of Montana
Charles Ladd, Engineer and Architect, Southern Energy Management, Morrisville, NC
Robert Lamppa, Director of Facilities Management, University of Maine at Farmington
Robert Lerseth, District Cooling Plant Manager, University of Hawaii at Manoa
James Lowe, Director of Engineering, Construction and Operations, Ball State University (IN)
John Lund, former Director, Geo-Heat Center, Oregon Institute of Technology
Michael McCain, MEP Engineer, Wisconsin Institutes for Discovery, Mortenson Construction
Grant McCormick, Campus Planner, Campus and Facilities Planning, University of Arizona
Glenn McCreedy, Marketing Coordinator, External Relations, University of Arizona
Jim Mckee, Architect, Long Range Facilities Planning, Oklahoma State University
Lander Medlin, Executive Vice President, APPA
Kirk Mescher, P. E., Principal, CM Engineering, Inc., Columbia, MO
James (J.B.) Messer, Director of Facilities, Oklahoma City Community College (OK)
Charles Nelson, CAN Consulting Engineers, Minneapolis, MN
David Norvell, Director, Sustainability & Energy Management, University of Central Florida
Paul Pinkston, Senior Facilities Planning Specialist, University of Wisconsin-Green Bay
Les Raduenz, former Director of Facilities, University of Wisconsin-Green Bay
Raymond Rieck, Vice President for Business Services, Lake Land College (IL)
Melody Sanders, Office of University Communications, Drury University (MO)
Bobbi Shaw, Circulation Desk, McAfee Library, Park University (MO)
Tina Shelton, Director of Communications, John A. Burns School of Medicine, University of Hawaii at Manoa
Lisa Shevenell, Nevada Bureau of Mines and Geology, University of Nevada, Reno
Bonnie Smith, Administrative Assistant, Facilities, Feather River College (CA)
Lynn Stiles, Professor of Physics, Richard Stockton College (NJ)
John Stoll, Austin E. Cofrin Professor of Management and co-Director of the Environmental Management and Business Institute, University of Wisconsin-Green Bay
Fred Tepfer, Project Planning Manager, Campus Planning and Real Estate, University of Oregon
John Treston, Architect, Long Range Facilities Planning, Oklahoma State University
Rick Waligora, Director, Facilities and Maintenance, Northland College (WI)
John Webster, Field Services Technician, EarthLinked Technologies
Douglas Wells, Director, Central Plant, Rice University (TX)
Kevin Williams, Lead HVAC Technician, Lane Community College (OR)
National Wildlife Federation Staff

Larry J. Schweiger, President and Chief Executive Officer
Jaime Matyas, Executive Vice President and Chief Operating Officer
Jeremy Symons, Senior Vice President of Conservation and Education
Kevin Coyle, Vice President for Education and Training
Laura Hickey, Senior Director of Global Warming Education
Mary Burnette, Associate Director of Communications
Bill Dion, Communications Manager
Kelly Senser, Senior Associate Editor, National Wildlife Magazine
Patrick Fitzgerald, Director, Education Advocacy
Tim Warman, Vice President, Climate and Energy
Dan Chu, Vice President, Affiliate and Regional Strategies

NWF Campus Ecology Staff

L. Julian Keniry, Senior Director, Campus and Community Leadership
Kristy M. Jones, Senior Manager, Campus Climate Education and Action
Jennifer Fournelle, Campus Ecology Program Coordinator
Courtney Cochran, Program Assistant, Campus Ecology
Cheli Cresswell, Media and Events Coordinator, Campus Ecology
Lisa Madry, Director, Campus Outreach
Praween Dayananda, Campus Field Coordinator, Campus Ecology
Juliana Goodlaw Morris, Campus Field Manager, Campus Ecology
Carly Queen, Campus Field Coordinator, Campus Ecology

Project Team Leaders

PROJECT COORDINATOR: Cheli Cresswell
PROJECT CO-DIRECTORS: L. Julian Keniry, David Eagan
LEAD COMMUNICATIONS STAFF: Max Greenberg, Mary Burnette
SPECIAL SUPPORT AND GUIDANCE: Tim Warman, Kevin Coyle
About Campus Ecology

Since its inception in 1989, National Wildlife Federation’s (NWF) Campus Ecology program has earned respect as a national leader in the campus sustainability and climate action movement. Originally named Cool-It!, the program has long recognized the opportunities for higher education to lead society to a clean, just and prosperous energy future. Our program’s tools, training and expertise serve students, faculty and staff in a wide range of capacities. Its publications, workshops, fellowship program, web-based resources and talented staff have empowered students and inspired environmental stewardship on hundreds of campuses nationwide. Equally important, its personal assistance with energy efficiency and conservation projects has led to significant financial savings. Now, after more than 20 years working to green America’s campuses, a widespread demand for an educated green workforce has finally emerged. One of the most important roles the Campus Ecology program can play is to help better position colleges and universities (and especially community colleges) to serve this need. In 2009, we shifted our work to include this positive vision of an approaching sustainable, clean energy economy and new, greener careers, while still supporting the critical need to reduce greenhouse gas emissions, protect habitat, and cultivate student leaders in the process.

Reducing greenhouse gas emissions goes hand in hand with creating the green jobs needed for a sustainable, clean energy future. NWF’s Campus Ecology programs works with many other youth and conservation organizations to extend our reach including the Energy Action Coalition (www.energyactioncoalition.org), Clean Air-Cool Planet (www.cleanair-coolplanet.org), AASHE (Association for the Advancement of Sustainability in Higher Education - www.aashe.org), APPA (Leadership in Educational Facilities - www.appa.org), SCUP (Society for College and University Planning - www.scup.org), and Jobs for the Future (www.jff.org).

If you have questions please call us at (703) 438-6000 or email campus@nwf.org
And be sure to keep up with the latest at www.CampusEcology.org
Overview

“This geothermal energy guide is for higher education administrators, staff, faculty and students who are exploring the implications of climate change and seeking cost-effective solutions. It presents information about various types of geothermal energy projects, and provides many case studies from 160 campuses in 36 states across the U.S. that are leading the way in the implementation of such projects. Five different geothermal systems are highlighted: ground-source heat pumps, direct geothermal, aquifer and lake-based, geothermal electricity, and earth-sheltered buildings. The goals of this guide are to inform institutions about geothermal energy’s potential to heat, cool and power American higher education, to inspire campuses to consider using geothermal technologies to lower long-term energy costs and energy demand, and to reach greenhouse gas emissions reduction targets.

As a founding organization of the climate action movement, NWF’s Campus Ecology has helped hundreds of colleges and universities cut greenhouse gas emissions, save millions on energy costs and embed environmental values in campus operations and curriculum. Campus Ecology has worked closely with all types of schools: public and private, large and small, community and technical colleges. As a result, it has a breadth of experience, ideas and resources to offer any college or university. The mission of Campus Ecology is to foster climate leadership on campuses nationwide and to protect wildlife and our children’s future against the growing threat of global climate change. This report is a guide for administrators, staff, faculty and students exploring the implications of climate change and seeking cost-effective solutions. It presents a scientific overview of global warming and a review of the business, educational and moral arguments for confronting this problem. Case studies from a diverse group of leading campuses illustrate energy-conserving and emissions-saving projects, effective financing strategies and creative ways to involve the campus community. A section on the planning process and implementation steps is included to help campuses get a jump on cutting costs and reducing their carbon footprint.

NWF’s goal for society—and for higher education—is to reduce carbon emissions by 2% per year, leading to an 8% cut by 2050. Achieving 2% or greater reductions each year can start with simple actions like lowering the thermostat or installing occupancy sensors. But this call for action on campus goes beyond asking for small steps. Heeding the world’s top scientists who warn that global warming will trigger a potential cascade of negative consequences, Campus Ecology urges bold action and critical leadership today and throughout the next decades, when our actions will determine the fate of the climate for generations to come.

“Students on today’s campuses are helping to lead the way now, and will soon be the leaders in business and government who will be called on to address this ongoing worldwide threat.”

–Al Gore, former Vice President, Broadcast of NWF Chill Out: Campus Solutions to Global Warming
In 2005, the National Wildlife Federation established global warming as one of three chief concerns for the organization, recognizing that it could not successfully protect wildlife without also working to stabilize the climate. While the impacts of global warming are an overarching threat to wildlife and ecosystems, their reach also will touch every facet of society—human health, agriculture, national security and the economy. Turning the tide on global warming may be the most far-reaching challenge of our time, but it also is an extraordinary opportunity to create more efficient, resilient and sustainable colleges and universities—and to inspire students to make a commitment to climate action in their lives and careers.

NWF’s Campus Ecology program has focused its attention on global warming solutions and is committed to providing resources to assist postsecondary institutions make the transition to a low-carbon, clean energy future. Contrary to conventional opinion, the path to climate sustainability not only is technologically possible but it can save substantial amounts of money. This report offers a roadmap for how colleges and universities can make it happen.

“That’s one of the things that’s quite powerful about the basics of sustainability – discovering that it’s less expensive to operate sustainably.”

—Charlie Lord, Director of the Urban Ecology Institute, Boston College

Climate Action Opportunities
for Higher Education

By taking strategic, climate-positive action, campuses can dramatically cut CO₂ emissions by at least 2% per year, 30% by 2020 and 80% by mid-century—the targets advocated by the majority of scientists. By achieving these benchmarks, campuses will also:

• Reduce operating costs and generate favorable returns on clean energy investments.
• Buffer against uncertain future energy supplies, rising costs and mandated emissions limits.
• Identify exciting new research and service-learning opportunities.
• Encourage interdisciplinary collaboration among faculty.
• Prepare students for sustainability and climate leadership in all careers and professions.
• Appeal to current and prospective students, parents and donors.
• Foster a campus-wide ethic of environmental stewardship.
You are in for a treat. The National Wildlife Federation has compiled in this document a concise, well-organized and very instructive survey of the landscape of opportunities for colleges and universities to employ geothermal technologies and earth-integrated architecture on their respective campuses. The guide will be useful to administrators, faculty, staff and students as they open dialogue, frame questions and conceive strategies regarding the complexities of energy systems intervention—whether for individual buildings or the campus as a whole. This report provides a quick study of the principles of the many geothermal technologies used for energy sourcing (and sinking) as well as climate buffering, and presents case studies of institutions of varying size and location that are engaging the benefits and challenges within this technical arena.

The benefits and challenges are many. From an operations perspective, direct-heat geothermal and ground source heat pump geothermal technologies can be used to offset the carbon dioxide equivalent (CO₂e) greenhouse gas emissions otherwise associated with on-campus fossil fuel combustion. And although the electrical energy needed to power the technology itself can be the product of fossil fuel combustion, the upstream leveraging reduction on CO₂e greenhouse gas emissions remains significant. In fact, because of the high coefficients of performance in the physics of heat pump energy transfer, geothermal heat pumps produce multiple units of heating and cooling thermal energy for every purchased kilowatt-hour (kWh) of electrical power.

These benefits extend further when considering the impact of energy conservation in buildings on campus; for every reduction in energy demand, the upstream impact can be multifold. This is especially true for buildings that are underground or earth-integrated; the relative constant temperature of the ground assures that such buildings see a moderate ambient condition no matter how severe the above-ground, seasonal climate swings might be. This translates to a reduction in demand for upstream energy supply.

For all these reasons it is desirable to use a whole-systems view of performance and to ‘bundle’ conservation with alternative energy sourcing, when scheming campus system(s) design.

Installing geothermal technologies sets the stage for more strategic climate action planning. Geothermal technologies are scalable; they can yield a measurable cost-benefit for individual buildings or the campus as a whole. And to the extent that a whole campus moves away from (or eliminates completely) on-site fossil fuel combustion, the opportunity to exploit upstream green-power supply becomes ever greater, contributing to the growth of the green-energy, grid-supply market. Geothermal energy distribution networks on campus can be used as well for ‘lateral’ energy-flow management—whether for the real-time, synchronous ‘trading’ of waste energy from one building to the energy needs of another or for the scheduled asynchronous sinking (for future use) of the thermal loads from the sun and occupant activity.

Cost benefit considerations affect decisions. A complication for most colleges and universities is that capital budgeting is funded independently from operational budgeting and evaluating the economics of long-term benefit against the short-term expense is difficult; yet this can be significant, especially when considering the net present valuation of longer-term avoidable costs such as the yet-to-be-realized carbon tax (and/or cap-and-trade carbon market) that is coming!

1 Ball State University is installing a ground source heat pump district heating and cooling system to service all 45 campus buildings; this foreword is written from the perspective of the importance of a whole-campus perspective. See Ball State story on page 24.
In running such projections, even at modest unit-cost per ton of CO₂ emissions, colleges and universities will face significant long-term annual tax encumbrance for on-site (SCOPE 1) fossil-fuel combustion. Geothermal technology shifts that avoidable cost upstream to the utilities that generate the electrical power. This means that because of the efficiency gains of on-campus geothermal technologies, the utility will pay less in carbon taxes than the campus would have, had it maintained conventional on-site generation. In other words, geothermal is not just about load and cost shifting, it represents true conservation and efficiency and net reduction in greenhouse gas emissions. Moreover, these moves will yield, in today’s dollars, a net present value positive cash-flow and annual savings for the avoided on-campus (and upstream) fuel purchase.

Required acreage can be a challenge. To the extent that placement of bore-hole fields for closed-loop heat pump systems can be aggregated in one or two centralized areas of a campus, the challenge is less daunting. But such centralized district-scale system installation offers the longer-term benefits of energy management as noted above. And connecting those supplies to the existing heating, ventilating and air conditioning (HVAC) systems of campus buildings already in place is not as complicated as might be presumed. Since the supply of energy from any centralized campus geothermal system must run through the heating and cooling exchange coils in the air handling systems, as well as the building’s hydronic distribution systems, much of the system is not ‘new’ technology. The main requirement is to balance the face area and flow rates of the main coils or the terminal reheat coils to meet the demands built into the design of the mechanical system already in place.

Another challenge is that of time. On its face, the implication of geothermal technologies might suggest application one building at a time, but such incremental steps only diminish the chance to capture the longer-term gains of campus-scale energy management. The better strategy for implementation over time requires a whole-systems vision and scheduled integration of campus-wide geothermal technologies.

Geothermal technology can be integral to the educational. To the extent that geothermal conversion can be made at the scale of a whole campus, it eases and amplifies the teaching of whole-systems design and the understanding of the campus as a complete operational organism. This can be useful to students of all disciplines. Since much of the mechanical servicing of campuses remains above-the-ceiling, below-the-floor, or in the remotely located boiler rooms and utility closets of campus buildings, the everyday occupants are largely unaware of these technologies. The educational opportunity is to bring into public view the real-time monitoring of performance. This work was pioneered by students who wanted to monitor the performance of the Adam Joseph Lewis Center at Oberlin College and has grown now into a nationwide corporate market for installing turnkey ‘dashboard’ reporting; nonetheless, some universities such as Arizona State University have continued to rely on graduate students and faculty for that development.

Active learning that can be structured into day-to-day operation of such systems. Buildings by their very existence are thermally loaded by the sun, and affected by wind, temperature and humidity swings—from day to day, season to season. Buildings in and of themselves are users of energy; occupied or not. The occupants, and the associated equipment and lighting add layers of complexity to the climatically-driven heating and cooling loads. The ‘dashboard’ tools mentioned above are often used as the basis of occupant competitions by which to learn more fully the importance of human behavior in shaping energy demand.
Campuses are uniquely suited to lead the way in geothermal technology implementation. Colleges and universities have a large number of structures and considerable acreage under single ownership/control. They have in place staff who know, in depth, the performance characteristics (and operational quirks) of those individual buildings and more generally the campus as an integrated whole. Implementing a multi-building, multi-scale geothermal energy intervention is a decision with wide ranging impact. Moreover, the more than 4,000 colleges and universities in the country which have a cumulative economic purchasing power of multi-billions of dollars can bring to life the green energy market, and spur more fully the development and application of innovative uses of the geothermal-based sourcing, sinking and management of energy.

Nonetheless, the jury is still out on several important concerns. One involves the unfortunate continuing use of ‘years of payback’ as a decision metric. No other purchase or investment that any of us make individually or institutionally is measured by such a criterion. Instead we look to ‘returns on investment.’ And that really should be the metric used for evaluating any sustainability-related technology. Remarkably with this approach, the otherwise pessimistic impression of a fourteen- or even twenty-year ‘payback’ is better understood as a 7% or 5% return on investment respectively. An immediate counter argument can be that this is an over-simplified economic analysis because it avoids opportunity costs, financial discount factors, inflation and increased utility expense, etc. But of course, none of those are in the ‘years of payback’ calculation either. ‘Return on investment’ really is the best metric for decision making.

Another concern is the confrontational nature of ‘reactionary planning’ for a new technology. If we continue to frame our concern for greenhouse gas emissions and climate warming from the point of view of problem/solution or right/wrong, we overlook the systems understanding and the profound opportunities embedded in the adoption of a whole-systems view of new technologies.

Thanks to the work of the National Wildlife Federation, however, we now have a guide that offers colleges and universities that opportunity space—a space for aspiration. If we aspire to have colleges and universities serve as exemplars of best practice, and if we aspire to using our economic buying power and scale of influence to affect positive change, and if we aspire to recognize that through our students we are stewards of the future, then we can continue to meet our fundamental mission. Bringing together faculty, students, staff and administrators within this opportunity space of geothermal technology as illustrated with this guide can, and will, be liberating.

Robert J. Koester AIA, LEED AP
Professor of Architecture
Director, Center for Energy Research/Education/Service
Chair, Council on the Environment
Ball State University
7 January 2011
I. INTRODUCTION

WHAT IS GEOTHERMAL ENERGY?

Renewable energy is steadily gaining ground on higher education campuses, and with good reason. The primary reason may be to reduce greenhouse gas pollution, but many schools are also finding that on-campus renewable energy initiatives create economic advantages, educational opportunities, energy security and even green jobs. Of the sources of largely carbon-neutral renewable energy available to colleges and universities—including solar, wind, biomass, micro-hydro and geothermal—it is geothermal energy that offers the most dependably-constant and low-impact supply.

Geothermal energy is defined most simply as ‘heat of the earth.’ It is naturally abundant everywhere and is considered a renewable resource because it is generated from continually available sources—either solar radiation striking and stored in the ground or residual heat released from deep within the earth’s crust. Different technologies have been developed to use the earth’s heat to provide clean, renewable energy options for heating and cooling buildings, and—where conditions are right—the production of abundant electricity.

WHY GEOTHERMAL ENERGY?

There are many advantages to using geothermal energy, including rapid return on investment, relatively low cost, and longevity of duration. Compared to other renewable energy sources, geothermal applications have high returns on investment (ROI) as a result of relatively short payback periods. The costs for installing geothermal heating and cooling systems or electric power generation are quickly recouped as a result of significant energy cost savings. The long-term environmental and economic benefits combine to make geothermal energy a very attractive option, especially with the heating, cooling and powering of campus buildings which are responsible for the largest share of higher education’s energy consumption and greenhouse gas emissions. This is why government agencies, the commercial renewable energy sector and renewable energy advocates are pushing for increased investment in geothermal energy technologies, which currently contribute to only around five percent of total U.S. renewable energy delivery (see chart).
ABOUT THIS GUIDE

This geothermal energy guide is for higher education administrators, staff, faculty and students who are exploring the implications of climate change and seeking cost-effective solutions. It presents information about various types of geothermal energy projects, and provides many case studies from a diverse group of campuses across the U.S. that are leading the way in the implementation of such projects. The goals of this guide are to inform institutions about geothermal energy’s potential to heat, cool and power American higher education, to inspire campuses to consider using geothermal technologies to lower long-term energy costs and energy demand, and to reach greenhouse gas emissions reduction targets.

The Climate Imperative

A commitment to finding solutions to global warming has been central to the mission of the National Wildlife Federation for many years. Wildlife — and all forms of life — will need a habitable planet, which requires a stable climate. How much reduction in greenhouse gas (GHG) pollution is needed? Unfortunately, the number keeps rising because global emissions have been accelerating, not slowing down as scientists have been advising for decades.

In past reports, NWF urged a reduction in the U.S. of 2% per year, including emissions from colleges and universities. But given new understanding of the lag effect of GHGs in the atmosphere, and the likelihood of a higher-than-anticipated global temperature rise that could lead to devastating consequences, NWF is turning up the heat on that timeline. Its current goals:

In all sectors of society
• Emissions reductions of 4% per year over the next 10 years (higher reductions are needed at the start due to the delayed effect of GHGs on atmospheric temperatures)

Long term emissions reductions needed
• At least 35% by 2020
• At least 80% by 2050 or sooner

NWF urges readers to keep up with the latest science on climate change through its web portal and blogs (see http://www.nwf.org/GlobalWarming), as well as through widely available information on the internet and elsewhere.

For anyone unfamiliar with the ‘stabilization wedges’ idea, this image shows how multiple actions will be needed to cut emissions. It will take a lot of people working on technical and behavioral solutions to reduce GHGs fast enough to mitigate the worst effects of climate change.

(After Pacala and Socolow, Science, 2004)
II. THE OPPORTUNITIES FOR USING GEOTHERMAL TECHNOLOGIES ON CAMPUS

Over the past decade, higher education institutions across the country have invested heavily in geothermal energy. There are now around two hundred American campuses that have implemented geothermal technologies—including earth-integrated buildings—and many more are in the planning process. (See Appendices A and C for lists of schools with geothermal systems and earth-integrated buildings.)

The great majority of installations are geothermal ground-source heat pumps (GHPs) and earth-sheltered buildings, but there are a handful of other successful projects including lake-cooling, direct-use high temperature geothermal, and electricity-generating geothermal. The growth in numbers of systems is largely the result of both rising energy costs and increasing concern about climate change. Explanations and illustrations for each type of system are ahead in section III.

Geothermal resources offer an efficient, renewable alternative for the heating, ventilation and air conditioning (HVAC) systems needed for buildings. Plus, such earth-heat resources are found in virtually every geographical location in the U.S. where campuses have been built. Across the country, decision makers are coming around to the fact that geothermal energy is a smart environmental and economic investment.

A Growing Investment Nationwide

Growth in the national geothermal heat pump industry is measured, by the U.S. Energy Information Administration (EIA), in terms of units shipped and heating/cooling capacity.

- Shipments of geothermal heat pumps jumped from 35,581 units in 2000 to 115,442 units in 2009.
- During the same time period, shipments of geothermal heat pump heating and cooling capacity grew from 164,191 tons to 407,093 tons.
- In 2009, domestic shipments went to all 50 states and the District of Columbia. About 52 percent of domestic GHP shipments went to ten states: Florida, Illinois, Indiana, Michigan, Minnesota, Missouri, New York, Ohio, Pennsylvania and Texas.

Strategic use of geothermal energy can be a key component of a climate action plan. While improving energy efficiency and reducing demand are essential approaches to cutting a campus carbon footprint, using carbon-neutral renewables like geothermal can offer significant, long-term reductions.

Realizing the savings potential, Ball State University (IN) has already broken ground on an ambitious campus-wide geothermal system to provide heating and cooling energy for its entire campus (see story on page 24). And the University of Minnesota has cut energy demand by placing major portions of several structures below ground.

There are thousands of colleges and universities in America, and a quarter million individual campus buildings (see box). Since the vast majority are still heated and cooled with fossil fuels, buildings are one of schools’ primary sources of harmful emissions. In fact, the coal, oil, natural gas and electricity...
required to maintain comfortable temperatures throughout the year accounts for fifty to ninety percent of total direct emissions—primarily carbon dioxide (CO₂)—on a typical campus. In addition, fossil fuels are associated with many serious environmental and social costs due to extraction, processing and shipping. Because geothermal energy does not rely on these CO₂-intensive resources or require any offsite extraction, processing or shipping, it provides energy that has a significantly smaller carbon (and overall environmental) footprint. Renewable sources of energy, while not perfect, offer a significantly lesser overall impact and carbon footprint.

Another advantage to geothermal energy projects is the flexibility of application. Whether constructing new buildings or renovating older structures, schools can design and install geothermal systems to meet part or all of their HVAC heating and cooling requirements. Urban campuses excluded, the majority of colleges and universities are typically situated on campuses that have abundant land where such systems can be hidden from sight. In fact, unlike highly visible installations, such as solar panels or a wind turbine, a school may need to maintain an educational effort to keep the campus—and especially new students and staff—informed about the presence and benefits of their geothermal installations.

FINANCING STRATEGIES

In addition to investing campus resources, administrators drew on one or more of at least ten different sources to finance some of the geothermal systems featured in this guide. This table shows the range of possibilities. See the individual campus stories for details.

<table>
<thead>
<tr>
<th>College or university</th>
<th>Sources in addition to capital budgets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball State University (IN)</td>
<td>State appropriations and Federal stimulus grant</td>
</tr>
<tr>
<td>Drury University (MO)</td>
<td>Alumni gifts</td>
</tr>
<tr>
<td>Feather River College (CA)</td>
<td>Lease agreement, Private grants</td>
</tr>
<tr>
<td>Hamilton College (NY)</td>
<td>State grant</td>
</tr>
<tr>
<td>Lake Land College (IL)</td>
<td>Guaranteed energy savings contract and Federal grant</td>
</tr>
<tr>
<td>Northland College (WI)</td>
<td>Fundraising campaign</td>
</tr>
<tr>
<td>Richard Stockton (NJ)</td>
<td>Utility rebates, State grants</td>
</tr>
<tr>
<td>University of Illinois-Chicago</td>
<td>Independent foundation established by utility</td>
</tr>
<tr>
<td>University of Maine at Farmington</td>
<td>State bond issue, Alumni gifts</td>
</tr>
</tbody>
</table>

Why Higher Education Matters

By the numbers in 2009 –

- 4,350 degree-granting U.S. colleges & universities
- 19.6 million students (with close to half of undergraduates attending community colleges)
- 240,000 buildings with 5 billion square feet of floor space
- $15-18 billion in new construction and renovation each year
- $20 billion annually—and rising—for facilities maintenance, operations and utilities

The numbers alone are impressive, but perhaps more important is the fact that today’s college and university students will become leaders in most areas of the U.S. economy in the years to come. What they see modeled and emphasized during their college years will have an impact on their understanding of sustainability and climate change, and on their future decisions about energy use.
PUTTING THEORY INTO PRACTICE

The rest of this guide focuses on the practical applications of earth-based thermal resources, both geothermal technology and earth-integrated architecture, for colleges and universities. This vast renewable resource—possibly the best means to effectively displace fossil fuels currently used for heating and cooling buildings—holds great promise as one of the key solutions needed to put a halt to greenhouse gas pollution, not just from campuses but from the built environment nationwide.

III. REVIEW OF GEOTHERMAL TECHNOLOGIES

WHAT IS GEOTHERMAL ENERGY? A TECHNICAL EXPLANATION

Geothermal energy originates from one of two sources:

1. Solar energy stored in ground or water near the surface and
2. Heat from the earth’s inner mantle that is accessible relatively near the surface (within a few miles).

Five technological processes are commercially available to capture this abundance of renewable energy, and each is reviewed below:

1. Geothermal heat pumps (also called ground source heat pumps)
2. Aquifer thermal energy storage
3. Direct-use geothermal
4. Geothermal electricity
5. Earth-integrated architecture

Geothermal heat pumps and earth-sheltered buildings can be used nearly anywhere in the country. Geothermal electricity, direct-use geothermal and aquifer thermal storage have special geologic requirements and hence are more site-specific. Although each of these technologies comes with a higher upfront cost than traditional heating...
and cooling and electricity generation systems, payback periods can be as short as one to seven years and the long-term energy savings can be worth millions. See Section IV, Campus Case Studies, for examples of campuses across the country that are reaping the economic and environmental benefits of geothermal energy.

Geothermal’s Savings Potential

According to a 2008 report by the DOE’s Oak Ridge National Laboratories, if ground-source heat pumps were aggressively deployed, the accompanying reduced demand for electricity could prevent the need to build 91–105 gigawatts (GW) of electricity generating capacity. This is nearly half (42–48%) of the 218 GW of net new capacity projected to be needed nationwide by 2030. In addition, $33–38 billion annually in reduced utility costs (at 2006 rates) could be achieved.

Geothermal Heat Pumps – Nationwide possibilities

Geothermal Heat Pumps (GHPs) are the most accessible, cost effective, widely used and fastest growing type of geothermal energy. GHPs take advantage of the fact that the surface of the earth is a large solar collector. Stored heat from the sun maintains a relatively constant temperature below the surface (around 50º F) from just a few feet down to as deep as 1,500 feet. In a GHP system, a network of water-filled pipes brings heat up from the ground in the winter, where an electrically driven compressor and a heat exchanger concentrate the warmth. The building’s HVAC then distributes the heat as needed.

In summer, the heat pumps reverse the process. They draw unwanted warmth from the interior—similar to the way a refrigerator works—and then use water in the underground tubing to disperse the heat into the ground. But unlike refrigerators and conventional air conditioners which use the air around them as a heat sink, a GHP system uses the relatively cool soil underground, which is much more efficient.

For closed-loop GHP systems (see types below), the boreholes or trenches contain a flexible loop, typically of 1-1/4 inch diameter plastic pipe. Soil or thermal bentonite clay is backfilled around the piping to enhance heat conductivity. The fluid in the pipes (typically water) does not ever come into contact with groundwater.

This readily available heat source and sink can be integrated into a building’s HVAC system to boost heating and cooling efficiency, save energy costs and reduce greenhouse gas emissions. They function like traditional heat pumps—much like those in a home refrigerator—but instead of relying on the variability of external air temperature to provide interior heating and cooling, GHPs gain efficiency by utilizing the superior heat transfer properties of water combined with the earth’s natural insulating properties.
Most GHPs circulate water to and from buildings through pipes that are buried either deeply or shallowly underground. There are three types of closed loop GHP systems (horizontal, vertical and pond/lake) in which the fluid in the loops never mixes with groundwater. An open loop or well-based system, however, does take advantage of groundwater, using its naturally cold temperatures to operate the heat exchangers. (See drawings and descriptions.)

Horizontal closed loop systems are popular and cost effective for residential and commercial installations because no deep drilling is required. These systems, however, can require access to a greater amount of land because the system’s hundreds of feet of pipes are coiled or laid horizontally in trenches dug four feet or more deep.

Vertical closed loop systems work well for residential or commercial use, especially for larger scale installations because they often require significantly less land surface than horizontal systems, and can be used where soil is not deep enough for trenching. For these systems, boreholes that are four to six inches in diameter are drilled 100–500 feet deep. The long parallel “loops” of piping from each hole are linked together and connected to the heat pump inside the building. Vertical systems can be appropriate for HVAC retrofits where available land around the building is minimal.

Geothermal Heat Pump Efficiency
According to the Energy Efficiency and Renewable Energy (EERE) program of the DOE:

- Heat pumps that circulate water through a geothermal system use 25%–50% less electricity than conventional heating or cooling systems.
- Geothermal heat pumps can reduce energy consumption and greenhouse gas emissions by as much as 44% compared to air-source heat pumps and 72% compared to electric resistance heating with standard air-conditioning equipment.
- A secondary benefit of geothermal heat pump systems is relative indoor humidity control, which systems maintain at about 50%.

Geothermal Heat Pumps Keep Maintenance Costs Down
The high-density polyethylene pipe typically used in loop fields is made to flex and resist breaking. This is the same material often used in natural gas pipelines. The loop fields are estimated to last approximately 50 years. That is comparable to the life-span of any well-built heating and cooling system. The heat pumps themselves are located indoors and have similar maintenance requirements and costs as any space-heating or cooling device.
Pond or lake closed loop systems, in which the loop field is placed underwater, rely on the heat storage capacity of water. Where there is access to a body of water that meets minimum volume, depth and environmental criteria, pond/lake systems can be installed at less cost than other types of systems because no drilling or trenching is required.

Open loop systems typically use standing-column wells which pump groundwater to the surface where it is cycled through a heat exchanger and returned to the well. Open loop systems require specific hydrogeological conditions with adequate water flow. The wells are usually drilled much deeper than the boreholes of closed loop systems, ranging from 1,000 to 2,000 feet. Standing column wells are often installed in places with limited surface space, such as in cities and urban campuses. Local codes and regulations dictate whether the water must be returned to recharge the groundwater or can be discharged elsewhere. Ecosystem and aquifer impacts must be carefully assessed before implementation, and ongoing monitoring will be required because groundwater contamination is always possible. A variation on open loop geothermal is lake or ocean loop systems which pump cold water from deep underwater, extract the ‘coolness’ via heat exchangers, and return the warmed water to the upper layers of the water body. Cornell University (NY), featured in this guide, has such a system using Lake Cuyuga.

How Long Will They Last?
John Kelly, Chief Operating Officer of Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry, sheds some light on the often wide fluctuations in longevity estimates of ground-source heat pump (GHP) geothermal systems reported in the campus examples above.

“The projected service life of geothermal heat pump systems (GHPs) is significantly longer than that of conventional heating and cooling equipment. The reason for such outstanding performance is that GHPs don’t experience the same extremes of environmental operating conditions as conventional systems. Most GHPs are typically located inside the facilities they serve, rather than having components located outside with exposure to the elements. Further, GHPs don’t experience the extreme temperature stress associated with fuel-burning equipment. The U.S. Department of Energy estimates GHP service life at 25 years for the inside components and 50+ years for the ground loop and this example provides insight into the 20 to 50 year range of estimates of service life seen in the campus case examples. Due to a wide variety of system configurations and maintenance practices, different campuses may experience significant differences in GHP service life. For example, some may have installed their heat pump equipment outside, and some campus practitioners may be referring to the inside GHP equipment while others may be referring to the ground loop. It is not unusual for heat pumps to perform for over 30 years, but the greatly improved performance of new machinery can justify the economic replacement of older equipment even if it is still operating within design parameters.”

Aquifer Thermal Energy Storage - A promising geothermal frontier

Aquifer Thermal Energy Storage (ATES) is a variation on the open loop ground-source heat pump technology and is one of several methods of underground thermal energy storage. The difference from other GHP methods is that ATES systems rely on the presence of a stable, deep aquifer large enough to store both warmed and cooled groundwater.
To operate, the system has two sets of wells (see diagram). In summer, water drawn from the cool water wells (blue color) is used to cool interior spaces. The resulting warmed water is returned via injection wells to a different area in the aquifer. The summer heat stored in that area (red color) is then drawn out in winter, cooled in the process of giving up its heat, and returned to the cool part of the aquifer storage to be used again the following summer. Groundwater that is brought to the surface is returned to the aquifer, so there is minimum net loss. Aquifer temperatures near the wells are altered seasonally by the heat exchange process, so when the added heat in summer is combined with added cold in winter the thermal balance of the aquifer is maintained. Mechanical components and wells must be carefully designed to prevent groundwater contamination.

Hundreds of ATES systems are in use in Europe and Canada, but the technology has not been significantly used in the United States since research and development was halted in the early 1980s due to a shortage of funding from the Department of Energy and other public funding. Richard Stockton College (NJ) installed the nation’s first commercial-scale ATES system in 2008 (described below in Campus Case Studies). According to Stockton physics professor Lynn Stiles, ‘this technology has great potential in the U.S. because many of our population centers sit atop deep aquifers that are suitable for ATES.’

Direct-Use Geothermal - Hot groundwater at the ready

Direct-use geothermal is the most straightforward and cost-effective application of geothermal energy. Naturally-occurring reservoirs of warm to very hot groundwater (temperatures 68°F-300°F), primarily in the western half of the U.S., can provide heat for a variety of residential and industrial purposes. The typical use of this energy is for district and space heating in buildings, but also for such places as greenhouses, fish farms and swimming pools. Direct-use systems save thirty to eighty percent in heating costs over fossil fuels, with no greenhouse gas emissions. The Oregon Institute of Technology in Klamath Falls currently heats its entire campus using a direct-use geothermal district heating system, with the first installation dating back to 1964 (see Campus Case Studies section).

Thinking Big, Thinking Hot

The Oregon Institute of Technology sits atop a large reservoir of scalding hot water. The school is poised to become the only campus in the world to meet nearly all of its energy needs (heating, cooling and electricity) by accessing this on-site geothermal resource. To achieve this, OIT will continue to use its 45-year old direct use geothermal district heating system while completing a new power plant to tap hot water a mile below the surface to generate electricity. OIT is one of only four higher education institutions known to have direct use geothermal systems. The others are College of Southern Idaho and New Mexico Institute of Mining and Technology, with Boise State University under construction and Cornell University in the planning phase.
The technology is relatively simple. A well is drilled into the underground reservoir, tapping the supply of hot groundwater. The water is pumped through pipes into buildings where it can radiate heat into interior spaces, or be processed through a heat exchanger similar to other heat pump technologies. Once the water cools, it is either returned underground via a different well or discharged on the surface.

The Nation’s Hotbed for Geothermal

A recent survey cited by the U.S. Department of Energy identified the potential of direct-use geothermal in 10 western states:

- The study found more than 9,000 thermal wells and springs, and over 900 low- to moderate-temperature geothermal resource areas.
- There are hundreds of direct-use geothermal systems already installed.
- 270 cities within five miles of a resource hotter than 122° F have excellent potential for near-term direct use.
- If geothermal resources were used in those cities only to heat buildings, they could provide the energy equivalent of 18 million barrels of oil per year.

Geothermal Electricity — A rising renewable energy star

Creating electricity by using underground heat resources to spin turbines can contribute to a local power grid, at least in geologically favorable areas (see map). As tallied by the U.S. Department of Energy, geothermal electricity production ranks a distant third among currently implemented renewable energy technologies — but its potential is huge.

Making electricity requires high temperature rock formations and water (greater than 300° F) heated by magma deep within the earth. This naturally occurring energy heats water flowing through fractures and porous rock within the crust. In some places, hot water reaches the surface creating geysers and hot springs. In most regions, the heat remains trapped deep beneath a cap rock layer. Areas of the world with good geothermal electricity production potential, such as the western United States, have abundant hot water within one to two miles of the surface.

As of 2010, the International Geothermal Association reports that 10,715 megawatts (MW) of installed geothermal power capacity is producing 67,000 gigawatt-hours (GWh) of renewable energy annually in 24 countries including Iceland, New Zealand, Indonesia, Japan, Mexico, Italy, the Philippines and the United States (the world’s largest geothermal electricity producer). These numbers represent a twenty percent world-wide increase since 2005 in both capacity and generation. IGA reports that 70 countries currently have projects under active consideration or development. In the US, geothermal plants both large and small are operating in Hawaii, Idaho, California, Alaska, Utah and Nevada. Currently there are 188 geothermal power plants under development in 15 different states.
Geothermal electric plants have several designs. Some use steam piped from below ground to spin electric turbines. Others, such as the facility planned for the Oregon Institute of Technology (see Campus Case Studies section), pump hot groundwater through a heat exchanger where it vaporizes a low-boiling-point fluid, typically a hydrocarbon. This steam-like vapor creates the thrust to power a turbine. In this type of geothermal plant, two closed-loop systems keep the water and hydrocarbons separate, allowing clean groundwater to be pumped back down to replenish the reservoir. It is expensive to build a power plant and drill wells—but once in place, the energy is free, abundant, renewable and, unlike other forms of renewable energy, available around-the-clock. (See Appendix E for diagrams and explanation of different types of geothermal power plants.)

A new cutting-edge technology called Enhanced Geothermal Systems (EGS) is being developed because of its promise to produce geothermal energy in areas that have high below-ground heat, but lack naturally heated groundwater. An EGS creates geothermal reservoirs by pumping water down 5,000 to 10,000 feet or more where extremely hot, dry rock layers can heat it to temperatures exceeding 300°F. Once heated, the injected water is pumped via different wells back to the surface where it turns to steam and can be used to generate electricity. A 2006 study by the Massachusetts Institute of Technology says EGSs could provide 100,000 megawatts of electricity by 2050, enough to satisfy ten percent of the nation’s energy needs. In 2008, the U.S. Department of Energy pledged $10 million to research EGS.
Greater numbers of campuses around the country are tapping into an ancient way to use the earth’s below-ground temperatures for heating and cooling — by building underground. There are at least 145 such college and university buildings on 77 campuses in 32 states and the District of Columbia, many of which date back to the energy crisis of the early-1970s (see list in Appendix C).

Types of earth-integrated buildings

Any structure with a basement reaps some of the thermal advantages of being below grade. But true earth-integrated buildings go beyond that simple measure, maximizing ways to incorporate earth-sheltering in their design. Earth-bermed buildings, for example, use soil piled up along exterior walls and sometimes on rooftops to cut energy costs and shield the structure from wind, storms, rain and intense sunlight. But putting all or the majority of a building below grade offers the greatest benefits of going underground.

While the tops of subterranean buildings may be at ground level, they often have ingeniously designed entryways, sunken courtyards, banks of windows and skylights to let in fresh air and natural light (see photo). It takes a different sort of architectural thinking to create elegant, efficient buildings that will mostly be out of sight—but that kind of thinking readily finds a home on a college campus.

With space for new buildings at a premium on many campuses, going underground makes sense. It preserves open space and protects treasured views of historic buildings and landscape features. Using the earth’s steady temperatures and insulating properties, underground buildings require approximately fifty percent as much energy for heating and cooling as conventional buildings, significantly lowering GHG emissions.18 Due to the thermal buffering properties of the soil, they require lower capacity HVAC equipment when built. By being covered in soil, there is less need for expensive building exteriors or conventional roofing. Also, they are quieter and more vibration-free—a characteristic that was essential in the University of Oregon’s decision to build its new Nanoscience Research center underground19 (see images).
What are some of the downsides? According to author Loretta Hal who has done extensive research on earth-sheltered buildings, the chief problem is psychological; people tend not to like being underground. As University of Oregon campus planner Fred Tepfer put it, “The trick is, everyone wants daylight and views.” A wide variety of solutions have been devised to brighten underground spaces, but overcoming users’ potential aversion to subterranean life is essential. Another common problem is water leakage from precipitation, floods and groundwater. But with today’s modern waterproofing materials and technologies, moisture and drainage problems are largely an issue of the past. Hall also reviews air quality issues in her book (see box), pointing out that earth-sheltered structures need to address the same issues—such as adequate ventilation and minimizing volatile organic compounds—as tightly sealed aboveground buildings. One exception may be radioactive radon gas found in some soils, but effective measures can be taken to minimize risk in areas with high radon levels.

Fire safety is also a concern, but new detection and suppression systems minimize the risks. Plus, by being constructed mainly of concrete and steel, the frameworks of underground structures are essentially fireproof. There are a number of libraries and archives that take advantage of the steady environmental conditions of underground space, including Harvard University’s three-story underground Pusey Library whose Halon gas system for fire suppression is harmless to both books and people.
IV. CAMPUS CASE STUDIES – GEOTHERMAL TECHNOLOGIES IN PRACTICE

Despite the moderate temperatures found only a few feet below ground level, colleges and universities are finding that geothermal is hot! There are over 75 installations in place or under construction on campuses across the country, with more in the pipeline. Plus, at least 145 earth-integrated structures have been built on campuses. (See Appendices A & C)

Just as each school is unique, so too are their geothermal systems. This section features schools, large and small, with projects for both new structures and building renovations. Some projects were motivated by anticipated energy cost savings, some by student and employee demand, and others to help meet climate change commitments such as the American College and University Presidents Climate Commitment (ACUPCC). Overall, campuses report high satisfaction with the technology and a desire to increase their geothermal capacity.

Each case study summarizes key elements of a school’s geothermal systems or underground buildings. These include:

- **System** – Type, size and year installed.
- **Highlights** – Costs, funding sources, savings plus noteworthy features and successes.
- **Challenges** – Concerns or problems that arose during or after installation.
- **Takeaway** – Valuable lessons and inspiring stories.

Note: For these case studies, the authors compiled information from a number of higher education institutions that have built geothermal systems and earth-integrated buildings. The aim was to capture a diversity of campus examples and show the range of possibilities. Details came from official online college or university sources, as well as from phone and email conversations with campus personnel. Financial data, especially accurate cost-savings numbers, were often hard to secure so readers are invited to explore the nitty-gritty of geo-based installations on campuses or elsewhere to learn more and glean insights for projects they may be considering.

The campus examples below are organized into five categories:

1. Geothermal Heat Pumps
 A) Whole Campus Systems
 B) Retrofits for Existing Buildings
 C) Geothermal in New Buildings
2. Aquifer Thermal Energy Storage
3. Lake-Source Cooling (a variation of pond/lake geothermal)
4. Hot Spots: Direct Thermal Use and/or Electricity Generation
5. Earth-Integrated Buildings

1 Geothermal Heat Pumps

A) WHOLE CAMPUS SYSTEMS

At most schools, ground-source heat pumps handle part or all of the heating/cooling demands of just one or two buildings. Scaling a system to meet the needs of an entire campus, however, takes bold thinking and a major investment, but several schools have risen to the challenge—and its many benefits.
The three examples in this section show the adaptability of ground-source heat pumps in quite different campus settings. Richard Stockton College (NJ) has a sprawling main building with 14 wings plus a new arts and science building, which together serve 6,300 students. Lake Land College (IL), a two-year public college with 7,200 students, is a third of the way toward converting all of its 12 campus buildings to geothermal. Ball State University (IN), with 45 buildings and a population of 22,500 students, faculty and staff launched its project in 2009. When complete, its geothermal system will be the country’s largest. A fourth whole-campus system is found at the Oregon Institute of Technology, which takes advantage of its location over a geologic hot spot. Its application of direct-use geothermal is covered in section 4 ahead.

Richard Stockton College22 (NJ)

System – Installed in 1994, this is one of the largest ground-source geothermal systems in the U.S. Its closed loop system has 400 boreholes drilled to a depth of 425 feet and linked together with 64 miles of underground pipe. Providing 1,741 tons of installed heating/cooling capacity, the system handles 480,000 square-feet of classroom, office and lab space.

Highlights – The installation cost $5.1 million, but because most of the expenditures were covered by utility rebates and state grants, the campus got a return on its investment in only about six years. The savings numbers say it all: approximately $400,000 in annual fuel and maintenance savings, twenty-five percent reduction in electricity, seventy percent reduction in natural gas, and seventeen percent reduction in campus greenhouse gas emissions. International delegations from around the world have visited to learn about the system.

Challenges – The school monitors aquifer temperatures regularly to track ‘heat creep’ — the tendency of GHPs to warm the borehole region over time and diminish performance. Soil and aquifer microbes are also analyzed regularly to ensure that the extra heat from the loops does not encourage pathogen growth in surrounding groundwater. (Read more on this issue in the Benefits and Challenges, Section IV.)

Takeaway – The system remains one of the largest in the world. According to physics professor Lynn Stiles, “The Stockton project was groundbreaking due to its size and circumstances. Because of its uniqueness and use of test versions of some of the equipment, our lessons learned do not translate well to other institutions.” Stiles makes this point to emphasize the fact that geothermal knowledge and technology have advanced significantly since Stockton’s system was installed. He does, however, have a key piece of advice for other institutions interested in geothermal. “Payback for a properly engineered system should be 5-8 years,” he notes, “the most important thing to do is to hire an engineer who has successfully designed a 5-8 year payback system.”

Lake Land College23 (IL)

System – Lake Land College (LLC) is one-third of the way toward its goal of meeting one hundred percent of its heating and cooling needs with a closed loop ground-source heat pump network. It currently has two GHP systems installed, both completed in 2008. The first, a group of 30 boreholes drilled 200 feet deep, serves the 10,000 square-foot Fitness Center. A second system with 140 boreholes 300 feet deep, provides most of the heating and cooling needs for three other buildings totaling 124,000 square-feet. Because LLC has circular layout, it will integrate its current and future geothermal installations in a ‘hub and spoke’ arrangement, distributing heating and cooling energy throughout the overall system as needed (see aerial photo).

Eventually, the college plans to install enough borehole loops—as many as 470 in all—to provide the HVAC demands for its entire 386,000 square-feet of building space.
Highlights – Several years ago, faced with an aging infrastructure and rapidly rising energy costs, the college studied various long term renovation solutions for its 35-40 year old classroom and office buildings. After careful analysis, it developed a comprehensive strategy in collaboration with an engineering firm, Control Technology and Solutions (CTS), to gradually replace all heating and cooling systems with geothermal. Under a ‘guaranteed energy savings’ contract between the college and CTS, the $16.8 million project was launched with completion targeted for around 2012. Payback is estimated at seven to eight years for the extra costs required for the higher priced geothermal systems over what it would have cost to install conventional boiler/chiller systems. If savings targets are not met, CTS will cover the difference. One of the pieces of funding came from U.S. Congressman Tim Johnson who secured a $1.3 million grant from the Department of Energy to help pay for the system.

Savings have already been significant. Buildings retrofitted with geothermal (and other efficiency measures) require only about one-third as much energy per square-foot as they did in the past. The Field House currently shows savings of $32,000 a year, and the newly renovated Northwest Classroom Building boasts savings of around $50,000 a year. So far, the campus is getting more production out of its current geothermal system than the models predicted—which may reduce the total number of boreholes eventually required. Its 170 boreholes heat and cool 140,000 square-feet, though were designed to handle around 90,000 square-feet. A newly-opened 50,000 square-foot addition to the West Building was added to the existing system, requiring an average of only three watts of electricity per square-foot.

Challenges – The new HVAC and energy efficiency upgrades all have to take place without seriously affecting the normal operation of the campus, so major projects occur during the summer. To minimize disruptions to students and staff, they are making changes one building at a time. Once the geothermal system is fully operational, Lake Land will retain enough conventional gas-fired boiler and chiller capacity to ensure that the campus can meet demand during extremes of hot and cold weather. But even this peaking capacity will be decommissioned if the geothermal system proves its ability to handle any weather situation, as it is expected to.

Takeaway – Over the next ten years, Lake Land hopes to fully implement its ambitious plan to use renewables for nearly all of its energy needs. Along with its geothermal systems, it intends to erect four wind turbines and photovoltaic panels on its 300 acre campus, cutting its use of purchased electricity and natural gas—and its carbon footprint—to a bare minimum. Their goal is eventually to be completely off the grid. According to Raymond Rieck, Vice President for Business Services, the college expects to avoid or offset over 42,000 therms of natural gas and at least 580,000 kWh of electricity per year by the project’s completion. “When finished,” Rieck notes, “this project will revitalize the facilities and provide quality learning and working environments for students and staff in a timely, cost effective manner.”

Ball State University** (IN)

System – When completed, this vertical closed-loop system will be the largest in the country. Its 4,100 boreholes, drilled 400 feet deep, will provide all the heating and cooling needed for Ball State’s 45 buildings and 22,500 students, faculty and staff. The borehole fields will supply two energy stations that will supply an existing cold water loop and a new hot water loop running throughout campus. Using high performance heat pumps, the energy stations will ‘source’ or ‘sink’ thermal energy from—or to—the borehole fields (where underground temperatures average 55° F). The heat pumps will generate 150° F distribution water for heating or 42° F
distribution water for air conditioning. During the swing seasons of the year the campus requires simultaneous heating and cooling, so based on daily temperatures and building load requirements the distribution system will be used largely as an energy management device ‘swapping’ heat and coolness building-to-building (without requiring a geothermal exchange). During the peak heating and cooling seasons, the geothermal borehole fields will be called upon to ‘source’ (deliver) or ‘sink’ (store) energy.

2010 Update
Launched in 2009, Ball State’s geothermal project is midway through Phase 1. By April 2010, they had completed 1,300 out of the first 1,800 boreholes. By fall 2011 the first phase of the project will be complete, two York-brand heat pumps will be in place (with 2,500 tons of cooling capacity each), and about half of the campus will be hooked up to the system allowing Ball State to shut down two of its four coal-fired boilers. According to Jim Lowe, Director of Engineering, Construction and Operations, Phase 2 with its 2,300 boreholes and two additional York heat pumps, is “funding dependent.” They are working hard to secure funds to complete the project and fully replace the current wasteful—and carbon-intensive—boiler/chiller system.

Highlights – This project will replace the university’s worn out coal-fired heating/cooling system which was slated for a multi-million dollar upgrade. With $40 million committed from the state and another $5 million in federal stimulus money, the system will require another $20-25 million to cover its projected $65-70 million cost. By eliminating coal, it will reduce campus greenhouse gas emissions by roughly 50% or some 80,000 tons annually—an impressive accomplishment. It is planned that components of the system will be American-made and the project will add many jobs to the local economy. Estimates call for a net savings of $2 million per year with additional savings anticipated due to a reduction in operation and maintenance costs compared to the current district heating/cooling system.

Challenges – The installation cost of the system was the primary hurdle, but the university persuaded the Indiana legislature that the $45 million dollars they had appropriated to replace the aging boilers would be better spent on a revolutionary large-scale geothermal system, whose tangible benefits include long-term energy cost savings as well as GHG emission reduction, job stimulation and technology demonstration. Another challenge was to engineer the system properly so that the two massive loop fields would not alter the local hydrogeology. According to experts, the large number of boreholes will ensure that the system will yield the energy required without altering average underground temperatures. Finally, while the borehole fields are being created on the edges of campus away from congestion, a much more visible challenge will involve disruptions to traffic and pedestrians during the ‘re-piping’ of the campus core. This will require tearing up walkways, streets and lawns to lay the necessary piping, including installing several underground house-sized vaults for valves and other equipment.

Takeaway – The economic and energy savings are not the only significant innovations of this system. As Robert J. Koester, Professor of Architecture explains, “Because of the scale of this geothermal system and the fact that it is integrated into the entire campus building stock, we will be able to effectively trade energy from one building to another. We can pull heat out of a warmer building and deliver it to a colder one and vice versa. Hence, the geothermal network becomes an energy management system rather than just an energy sourcing system. The campus will operate as one big organism for its heating and cooling functions.”
B) RETROFITS FOR EXISTING BUILDINGS

Geothermal heat pump technology is replacing conventional heating and cooling systems in renovations as well as in new buildings. Both closed loop and open loop systems have proven effective on many campuses when retrofitting older buildings (see Appendix A), though each has technical and environmental considerations that must be tailored to specific installations. Closed loop systems require multiple boreholes and, if not sized properly, may raise underground temperatures over time, cutting efficiencies in the cooling cycle. Open loop geothermal requires fewer wells but there are more issues with corrosion, particulate filtering and potential groundwater contamination. Examples in this section are primarily single-building systems such as at Drury University (MO), Hamilton College (NY), Harvard University (MA), Northland College (WI) and Feather River College (CA), plus a multiple-building system at the University of Illinois-Chicago.

Drury University (MO)

System – Installed in 2008, this closed loop vertical system with 20 boreholes drilled 250 feet deep provides heating and cooling for the renovated 600-person capacity historic Stone Chapel.

Highlights – The Stone Chapel GHP project cost $295,000 which included expenses related to installing duct work in the historic building. This price tag was around $100,000 above the cost of conventional air conditioning. A $1.3 million donation from two alumni families covered the costs of this and many other building improvements. Based on a rough comparison of utility bills before and after the installation, savings in electricity and natural gas in the first year of operation were around $30,000, which translates into a 3–4 year payback for the cost difference for geothermal.

Challenges – Prior to the renovation, the chapel was heated inefficiently by old steam radiators supplied by a gas boiler that also supplied heat to three other buildings. In addition, this iconic building previously lacked an air conditioning system, which meant that in the uncomfortably hot summer months it was frequently underused. This makes it complicated to determine savings attributed to the GHP system. Although it will take several more years and careful calculations to get solid numbers, the first year’s savings look promising.

Takeaway – The Stone Chapel project is one of many sustainability steps being taken at the school. As reported in a press release about the project quoting the university’s president Todd Parnell, who is a signatory to the American College and University Presidents Climate Commitment, “This system shows that Drury University is serious about its commitment to sustainability and is working to reduce its production of greenhouse gases.” The geothermal system also shows how this technology is compatible with preserving historic structures. Once in place, such installations are out of sight, quiet, and easily integrated with available interior spaces of a building.

“We were looking to sustain the environment as well as the building by installing a cutting edge technology into one of the most historic buildings in town.”

–Wendy Anderson, Director of Campus Sustainability and Associate Professor of Biology, Drury University
Harvard University26 (MA)

System – Geothermal heat pump projects have been installed for eight Harvard buildings (see table). Of these, Blackstone, QRAC, Radcliffe Gym, Francis Ave and Byerly Hall were retrofits. Open loop standing-column wells are used for seven buildings, requiring from two to five wells per building. The 19 wells, most drilled to a depth of 1,500 feet, provide partial heating and cooling for these structures which contain classrooms, labs, administrative offices and student residences. The university recently completed its first closed-loop system with 88 boreholes, drilled 500 feet deep, for the 27,000 square-foot Weld Hill Research and Administration Building.

Highlights – For the retrofits, the GHP systems added summertime air conditioning to buildings that previously lacked central cooling. These open-loop systems have cut an estimated 20-50\% in energy costs over conventional HVAC. The system at Blackstone South—Harvard’s first GHP project—helped it attain LEED, leadership in energy and environmental design, Platinum certification for existing buildings when it opened in 2003. And with ongoing adjustments to air handling, heat pump operation and other factors, the building systems are outperforming energy efficiency expectations. An added bonus: the systems are well suited to preserving the look and character of the university’s historic buildings.

Challenges – Because the five existing buildings did not have central AC before the retrofits, nor was energy-use metering as comprehensive as it is now, it is not possible to calculate the actual savings due strictly to the geothermal systems. Performance of the open-loop wells has diminished somewhat over time due to the tendency of the aquifers to heat up in summer, providing less cooling capacity and reducing system efficiency. The open-loop systems are also prone to corrosion due to brackish groundwater, plus minerals in the water clog filters requiring added maintenance. The systems were also expensive to install. The Office of Sustainability’s Assistant Director, Nathan Gauthier, reports that a single 1,500 foot well cost around $80,000, which is about $50 per foot. With a payback of over 40 years, they were not installed for their cost-effectiveness but for other benefits.

Takeaway – Harvard chose open-loop wells partly because of limited space. “In a city, there is little space for a large closed-loop borehole field,” says Tony Ragucci, Associate Director of Facility Maintenance Operations. In addition, they are well-suited to the university’s urban location, especially in summer, because the ground-source heat pumps are much quieter than conventional rooftop air conditioning equipment. On the benefits, Gauthier notes: “The systems are reliable, long-lasting and produce comfortable heat.”

Lessons Learned at Harvard

Harvard has posted an informative 50-slide presentation that outlines the lessons it learned about operating open-loop systems—essential reading for anyone considering an open-loop standing column installation. See: http://www.green.harvard.edu/sites/default/files/attachments/oe/GSHPSharable3-08.pdf
Feather River College27 (CA)

System – Currently, there are eight separate geothermal installations at this northern California campus, with a ninth under construction. In 1998, a group of four projects were completed: three horizontal closed loop systems with a total of 192 pipes laid in trenches up to 300 feet long, and one vertical loop system with 10 boreholes drilled 125 feet deep. They heat and cool 75,000 square-feet of space in four structures: the library, gymnasium and two classroom/office buildings.

More recently, four horizontal loop systems have been added. The children’s daycare center uses a six-pipe system, installed in 2008, buried five feet below grade in a 500 foot trench. The maintenance building is heated and cooled with a 900 foot trench system, installed in 2008. There are another two ball-field clubhouses with similar systems coming online in 2010. See box for the ninth project—a novel idea that called for some creative engineering.

Artesian Well Prompts Innovative Geothermal Approach

Construction of the new 21,000 square-foot Learning Resource Center at Feather River College was two-thirds complete by fall 2010 and is scheduled to open in April 2011. During the drilling of a test borehole to determine heat conductivity for its planned closed loop geothermal system, an artesian well was discovered, flowing at a generous 130 gallons per minute. Rethinking its options, the college designed a one-of-a-kind scheme to tap that unexpected resource. Plans call for a 20,000 gallon storage tank to hold the clean well water which will be piped to and from the building’s heat pumps. Its large size will act as a heating and cooling buffer for the water. New water from the artesian well will be added as required to keep the tank temperatures in the proper range, adjusted for each season. The spent water from the tank will be used to supply the school’s fish hatchery—at the proper temperatures—and also to irrigate the fields of the equestrian studies program.

Highlights – So far, around eighty percent of campus building space has already been converted to geothermal. With the exception of just three buildings (including two temporary classrooms), Feather River soon will be close to one hundred percent geothermal for its heating and cooling. The four closed loop systems installed in 1998, which were chosen to replace the original outdated HVAC equipment, cost $512,000—which was $218,000 more than the price of installing less efficient air-source heat pumps or other conventional technology. Those geothermal systems reduced the college’s electricity consumption by 421,000 kWh per year and resulted in annual energy cost savings of $50,000 and CO₂ reduction of roughly 280 tons. The newer systems contribute additional savings. The daycare center saves around 21,470 kWh and the maintenance building saves 18,890 kWh annually. And on a practical matter, Feather River also realized it could save substantial sums by using its backhoe—which it already owned—to do the digging for horizontal loop projects.

Challenges – When drilling boreholes for the vertical loop system in 1998, unexpected problems with mud, granite and other geological features meant changing plans to avoid increased drilling costs. Instead of 250 feet deep as originally planned, some loops could only extend down a little over 100 feet. Typically, deeper loop fields provide more heating and cooling.
Grid Neutral by 2020 in California

California’s Global Warming Solutions Act of 2006 will require many public buildings—including schools and community colleges—to become grid-neutral by 2020. As explained by Bonnie Smith, Facilities Administrative Assistant at Feather River College, “The reason we’ve launched so many geothermal projects is to get ahead of curve on the upcoming grid neutrality date.” While FRC’s geothermal systems don’t produce electricity and require electric pumps to power them, their net demand for electricity has been significantly lowered. Discussions are underway for a photovoltaic installation that will be another step toward grid neutrality.

Takeaway – Feather River College provides lessons in creative financing. In 1998, administrators arranged a lease agreement with Princeton Development Corporation, the system designer, to repay a $120,000 loan with proceeds from energy savings, allowing the school to put no money down. In addition, the system received $35,000 from the Geothermal Heat Pump Consortium and $300,000 from the State of California for being a clean energy demonstration project. Thanks to this suite of funding sources, the college got a five-year return on investment for its original geothermal projects. Recent systems have been funded with state Energy Efficiency Grants and through participation in the Investor Owned Utility / California Community College Chancellors Office rebate programs aimed at increasing energy efficiency on California community college campuses.

Hamilton College (NY)

Systems – Three campus buildings use ground-source geothermal for heating and cooling. For the historic Skenandoa House, a closed loop system with 16 boreholes drilled to 400 feet was completed in 2004. A water-to-water radiant system warms the slab of this 21,000-square-foot dormitory, built in the 1920s, while thermostat controlled water-to-air heat pumps in each dorm room allow occupants to adjust temperatures to their individual preference.

In 2005, Hamilton installed a second closed loop system, comprised of 15 vertical loops each 370 feet deep, to heat and cool only the atrium of its new Science Center. The atrium project also has an educational mission; an interactive electronic kiosk provides real-time data about energy output. Most recently, Emerson Hall was renovated into a student union with the addition of a new structure similar in size and linked to the historic original. Opening in fall 2010, the new Sadove Student Center is heated and cooled by a closed loop system with 28 boreholes drilled to 500 feet.

Highlights – The Skenandoa House system cost $90,000 more than the college would have spent on a conventional heating/cooling system retrofit, but with over half of the extra cost covered by a grant from the New York State Energy Research and Development Authority (NYSERDA), the payback was only three years. The system shows the economic potential of GHP: a sixty percent decrease in energy use, $11,000 annual energy savings and $330,000 life-cycle savings based on the system’s projected 30-year lifespan. It is the school’s most energy efficient building.

Emerson Hall has been another model project. Its 30,400 square-feet are entirely heated and cooled by geothermal. Although costing more than a conventional HVAC system, one-third of the outlay was covered by a NYSERDA grant. An added benefit: the mechanical system required
“At Skenandoa House, students set the temperatures in their own rooms. After years we finally realized it makes more sense to let them control it. And they’re much more energy-efficient than we first figured they would be. We thought ‘if we let students have their own thermostats they’ll turn them up to 80!’ Well, actually they don’t. Some even turn their units off because the building now is well insulated and stays warm.”

–William Huggins, Associate Director of Physical Plant, Construction, at Hamilton College

for geothermal requires much less space than a typical system, so the building needed 500 fewer square-feet, cutting the overall construction bill.

Challenges – Space heating in the Skenandoa House is gradual and does not provide the blast of hot air some students are accustomed to. "It's an oxymoron, but geothermal heat is cool heat. You have to get used to it," explains Steve Bellona, Associate Vice President for Facilities. Another downside is the large size of the individual heat pump units which are similar in size to temperature control units in hotel rooms. They also tend to be noisy when operating.

At the Science Center, one of the underground pipes sprung a leak in an inaccessible spot—so the college bypassed the area and connected two borehole loops into a double-length loop and avoided compromising the high efficiency of the overall system. The anti-freeze chemical in the loop field fluid is a food-grade propylene glycol, so no harm to groundwater is expected.

Takeaway – Hamilton hired the most experienced local building designer with GHP experience, a crucial step for anyone installing geothermal. The Skenandoa system passed a tough test its first winter when temperatures dipped below zero for two weeks. According to Bellona, Skenandoa House was the only building on campus that didn't have any complaints.

Northland College (WI)

System – The campus has two closed loop vertical ground-source heat pump systems. The first, with 60 boreholes drilled 275 feet deep, was installed to heat and cool the 48,500 square-foot Ponzio Campus Center, built in 2002. Its geothermal system was added retroactively in 2004, but as of 2010 only the cooling capacity of the system has been used. A second GHP system, with 30 boreholes drilled 230 feet deep, was added during the 2008 renovation of the 19,000 square-foot Dexter Library.

Highlights – The loop system at Dexter Library cost $550,000 to install. It was part of a $2.5 million renovation of the entire building, a sum raised entirely through a fundraising campaign. Geothermal provides all-season temperature control for the library. In its first two winters of operation—in far northern Wisconsin—the system worked so well that the backup boiler remained idle. Based on past utility bills, the geothermal system is saving around $12,000 in natural gas, according to Rick Waligora, Director of Facilities. Expenditures for electricity, however, have doubled due to added demands from the geothermal system, though approximately twenty percent of the electric bill is offset by a 14 kW photovoltaic (PV) array mounted on the roof. The net carbon footprint for Dexter is significantly lower than in the past because the local utility burns sixty percent wood to generate electricity—and plans to burn all wood in the future. The building is on track to earn LEED-Gold certification.

Challenges – The Ponzio Center geothermal system is taking longer than expected to become fully operational. Since it needed to be designed to work with the building’s existing heating system, the project was very complex and during installation would have benefited from more solid engineering expertise and careful monitoring.
Students use the campus as a renewable energy laboratory

As explained by Clare Hintz, Northland’s sustainability coordinator, the college strongly encourages students to participate in practical sustainability. “We think about our campus as a lab where students can witness the successes and failures of new technologies, asking and answering tough questions about leadership for mitigating climate change. Tackling the challenges of technological innovations, and the human systems in which they are embedded, is at the heart of the work of environmental leaders.”

Takeaway – Students at Northland are actively engaged in bringing climate change solutions to campus—and use their own money to make it happen. Partial funding for the Ponzio GHP system came from the college’s Renewable Energy Fund whose resources derive from a self-assessed fee that students voted to pay for. Starting in 2000 the fee was $20 per semester but it doubled to $40 a semester in fall 2008. A committee of students evaluates and decides which renewable energy projects the fund will support, working in collaboration with college staff.

University of Illinois at Chicago

System – A large vertical closed-loop field provides heating and cooling for two renovated buildings on campus, and a third structure will soon be added to the system. In total, the system is calculated to satisfy eighty percent of the maximum load of all three buildings. It started with Grant Hall, a 15,000 square-foot office and classroom building which was renovated in 2007. Its loop field required 14 boreholes drilled 500 feet deep. Based on Grant Hall’s success, a 50-borehole loop field drilled 500 feet deep was added in the same area and hooked up to the newly renovated 25,000 square-foot Lincoln Hall. This 1960s-era classroom building reopened in late 2009. The loop field also was designed to accommodate nearby Douglas Hall, the 25,000 square-foot home of the business school which is undergoing renovation in 2010.

Highlights – Grant Hall’s $190,000 geothermal system cost was primarily funded by the Illinois Clean Energy Community Foundation, with the remainder from UIC funds designated for renovations of classroom and laboratory space. (The subsequent 50 wells cost approximately $650,000 to install.) To date, the Grant Hall system is performing better than originally expected, achieving an estimated eighteen percent in energy savings over the former heating system and contributing to a fifty percent cut in overall energy use for the building since the renovation (see box). As reported by Cynthia Klein-Banai, Associate Chancellor for Sustainability, the geothermal HVAC equipment provides more comfortable heating and cooling than was delivered previously by the central heating plant. With geothermal, it is easy to maintain a 72° temperature year-round. In the past, complaints about inconsistent temperatures were common, especially during the transition seasons of spring and fall.

Challenges – Proving that adding the geothermal systems provided an economic benefit was a challenge with each of the three buildings. Savings were calculated based on energy models for Lincoln Hall, but the data has been inconclusive, due in part to the fact that, in the past, the buildings were not metered individually for the steam or chilled water coming from the central plant. Also, the combined square footage of the three buildings adds up to only about one percent of the total 7,000,000
The geothermal system is a good example of how the three interlocking circles of sustainability work together: environmental—by reducing fossil fuel consumption and carbon emissions, social—by making a better learning environment, and economic—by saving money."

– Cynthia Klein-Banai, Associate Chancellor for Sustainability

square-feet on campus. While it is clear that overall energy consumption in the buildings is lower, electricity use has increased somewhat due to running the geothermal pumps and compressors.

Takeaway – Asked about the future of geothermal at UIC, Klein-Banai noted that “UIC has a mandate from campus administration and the University of Illinois Board of Trustees to reduce its energy consumption. Now that we have seen the success of geothermal, the board would like to see it used to the extent possible on all three University of Illinois campuses.” The success of geothermal systems is also helping propel the university’s sustainability dialog among students, faculty and staff. UIC currently is developing a formal policy on green building and energy through the Chancellor's Committee on Sustainability and Energy which will be an integral part of UIC’s climate action plan.

C) GEOTHERMAL IN NEW BUILDINGS

With new construction, every aspect of a building’s design and HVAC system can be integrated and right-sized for the expected heating and cooling performance required of the geothermal installation. As with retrofits, the majority of these new-building installations have been closed loop GHP systems. Examples in this section range from single building systems at Rice University (TX), University of Maine at Farmington, Warren Wilson College (NC), Wilson Community College (NC) and Yale University (CT), to multiple building systems at Allegheny College (PA) and Lipscomb University (TN).

Allegheny College

System – A vertical closed-loop system installed in 2006 provides heating and cooling to the three buildings, totaling 45,000 square-feet, which comprise the LEED Certified North Village Phase I with 30 boreholes, 500 feet deep. A similar system was added to the recently completed North Village Phase II, a 75,000 square-foot residence hall. Its loop field includes 48 wells at a depth of 500 feet. A third vertical closed-loop system serves the recently renovated 14,000 square-foot 454 House, home to Admissions and Public Affairs, with 17 wells also about 500 feet deep.

Highlights – North Village Phase I’s three buildings use eighty percent less fossil fuel energy during the heating season compared to the campus average—only .01 ccf/ft² of natural gas versus an average of .057 ccf/ft². When natural gas savings are added to the electricity savings from geothermal cooling—compared to conventional HVAC—the extra costs for the geothermal system will be paid back in 4–6 years, according to estimates by Ken Hanna, Director of Physical Plant.

Challenges – “During the first year of operation there were a few glitches to work out, of course, but this is often the case with a new energy system,” says Brian Gillette, Assistant Director of Physical Plant. Adjustments were needed in the system controls and a couple of circulation pumps had to be replaced. Overall, the campus community has been pleased with the comfort and performance of its geothermal systems.

Takeaway – “Geothermal… is now taken as a serious option for all new construction and major renovation projects since it has been so successful,” notes Kelly Boulton, Sustainability Coordinator. For several years the college had been exploring various ways to achieve greater energy efficiency and reduce its overall energy consumption. “Geothermal was initially introduced by the Physical Plant and administration as a means of achieving these goals,” says Boulton. Allegheny is considering installing geothermal for the upcoming renovation of Carr Hall, an academic building. “While this project is still in the design phase,” says Boulton,
“geothermal will be installed if appropriate within the budget and the building’s logistics. And we will explore adding more geothermal systems to buildings across campus, where feasible.”

Lipscomb University (TN)

System – Three vertical closed-loop systems serve eight buildings at Lipscomb. The first loop field was installed in 2006, with 144 boreholes drilled 300 feet deep. It heats and cools the 77,000 square-foot Ezell Center, a new office and classroom building. Another new construction project—the Village Apartments—consisting of four structures with a total of 48,000 square-feet was opened in summer 2008. It has 46 boreholes drilled 500 feet deep. A third geothermal installation serves an interconnected trio of buildings: the Burton Health Science Center (44,000 square-feet), Thomas James McMeeen Music Center (10,000 square feet) and Willard Collins Alumni Auditorium (15,000 square-feet). For this renovation project, also completed in 2008, a 70 borehole, 500 foot deep loop field was installed.

Highlights – The cost of the Ezell Center geothermal system was $1.2 million, with $500,000 covered by a U.S. Department of Energy grant. The Burton and Village systems cost $750,000 and $430,000 respectively. At the Ezell Center energy use is around sixty-five percent less than if heated and cooled with conventional HVAC, cutting utility bills by an estimated $70,000 per year. In addition, maintenance calls are a small fraction of those for other campus buildings, saving money on labor. Back when it opened, administrators anticipated a multi-year return on investment but spiking energy prices cut the payback to 16 months.

Challenges – Although comparatively few maintenance calls have been needed for the Ezell geothermal system, its in-room heat pumps are mounted above the ceilings which are harder for maintenance staff to access.

Takeaway – The new geothermal system has proven itself to outperform Lipscomb’s previous traditional HVAC systems. The Ezell Center system got a trial by fire during the scorching Tennessee summer of 2008, when temperatures topped 100 degrees for 16 days, but despite the heat, "It was the coolest building on campus," said Don Johnson, director of facilities. "The system has performed beyond our wildest expectations.” When asked why Lipscomb installed geothermal, Dodd Galbreath, executive director of the Institute for Sustainable Practice says, “Initially it was to reduce energy costs. Later, when our sustainability academic program began, it also became a ‘walking the talk’ issue.” Galbreath notes that “all future new construction and major renovations on campus will incorporate geothermal systems.”

Rice University (TX)

System – A vertical closed loop system with 10 boreholes drilled 250 feet deep heats and cools the 1,400 square-foot control room and conference room spaces within the South Plant, Rice’s new utility plant which opened in 2008.

Highlights – Richard Johnson, Director of Sustainability, notes that the geothermal system is a small demonstration project intended to help the campus “learn more about the potential for on-site renewable energy technologies to plan for Rice University’s future energy supply.” Its costs were folded into the larger construction project of South Plant’s 14,400 square-foot total. According to Johnson, “after two years of operation, the system has worked quite well.” So well, in fact, that the university commissioned a feasibility study for using geothermal in a proposed new building and initial feedback suggests that a building-scale system could be cost-competitive with conventional HVAC approaches.
Challenges – The project was designed to demonstrate the geothermal equipment, so no cost savings have been calculated. Rather, the main challenge was to successfully convince skeptical campus engineering, operations and maintenance personnel—through this pilot project—that geothermal technology could play a meaningful role in Rice’s energy future.

Takeaway – Rice’s story shows how geothermal heat pumps can serve as a renewable energy ‘gateway’ technology. As has been true of many campuses described in this guide, one geothermal project often leads to more. Johnson concludes, “We are exploring the potential for wide-scale applications of geothermal technology on campus, which is a conversation that would have been far more difficult had we not taken the initial small step of a demonstration-scale installation to prove to ourselves that it works.” Educational tours of the South Plant include the geothermal system, as well as its other green features: photovoltaic panels, high-efficiency chillers and boilers, condensate recycling, fly ash concrete, native landscaping and a vegetated green roof.

University of Maine at Farmington35

System – A 42 borehole closed-loop system drilled 400 feet deep heats and cools the new 44,000 square-foot Education Center, which opened in 2007. The building, home to the College of Education, Health and Rehabilitation, earned LEED-Silver certification in 2008. Elsewhere on campus, a 29 borehole closed loop system was part of the 2009 renovation of 1960s-era Preble Hall, whose 42,700 square-feet houses the university’s biology, chemistry and physics programs. Geothermal energy completely replaced its fossil fuel-based HVAC system.

Highlights – The Education Center system cost $280,000, with half the funding coming from a state bond issue and the remainder from gifts. According to Rob Lamppa, Director of Facilities Management, “We have followed the energy consumption for the Ed Center over the last three years, comparing it to a 1970s campus facility of similar size and use.” Based on those numbers, UMF calculates that the building consumes about seventy five percent less energy, saving the campus approximately $60,000 and 325 metric tons of carbon emissions per year, with a payback of around six years. Thanks to the success of the Education Center system, plans are underway for geothermal to be used to heat and cool the new campus Emery Community Arts Center, which broke ground in spring 2010, and potentially several other buildings.

Challenges – Evaluation of the Education Center system is difficult due to the fact that energy comparisons were made with an older, inefficient building. As with most construction projects, the geothermal drilling added to the disruption of traffic in the vicinity of the site.

Takeaway – The Education Center is a showpiece for sustainability. UMF faculty and students received a grant from the U.S. Green Building Council’s Excellence in Green Building Curriculum program to develop and provide public tours of the building and its green technologies. For these tours, education students serve as spokespersons for sustainability. The goal is to increase community knowledge and awareness about the benefits of building green.

Warren Wilson College36 (NC)

System – Installed between 2004 and 2007, three vertical closed loop systems provide heating and cooling for three campus buildings. The new Orr Cottage, a 6,800 square-foot LEED-Gold certified structure, has four boreholes drilled 300-350 feet deep. The renovated Jenson building, a 27,750 square-foot classroom building, has 14 boreholes drilled 300 feet deep. And the renovated 5,155 square-foot Lauren administrative building installed four boreholes drilled 300 feet deep.
Highlights – The geothermal system at Orr Cottage, combined with a very tight building envelope and efficient lighting, results in the building using an estimated 56% less energy than the industry standard (based on ENERGY STAR Portfolio Manager). This translates to 1,650 tons of greenhouse gas emissions avoided over the GHP system’s estimated 50 year lifespan. Based on energy savings alone, the building’s total ‘green’ investments, costing an additional nine dollars per square foot, are expected to be paid back within 12 years by deferring roughly $5,000 annually in energy costs.

Challenges – While the Orr Cottage is performing well, the Jensen GHP system is not achieving its anticipated savings. Its geothermal system was installed to replace an antiquated electric radiant heat system. The building’s electricity use, however, has actually risen slightly since the loop field was installed. Additional system commissioning is underway to determine whether or not the problem is equipment or design related.

Takeaway – Asked why he favors geothermal heat pumps, facilities director Paul Braese reports, “For the most part they are very problem free.” Further, he added, “With these systems you can have a lot of heating and cooling zones. There are 10 in the newly constructed Orr Cottage, so people are more comfortable and energy is distributed more efficiently.” Warren Wilson is motivated to use geothermal as one of many strategies to reach its goal of carbon neutrality—required as a signatory of the Presidents Climate Commitment—as well as to demonstrate renewable energy alternatives to its neighbors in the region. “Our commitment to renewable energy and energy conservation,” Braese explained, “is increasingly expressed through our green buildings, which shows we are serious about walking our talk.”

Wilson Community College (NC)

System – Installed in 2008 to heat and cool the new 16,000 square-foot Student Services Building, the closed-loop ground source geothermal system uses EarthLinked© technology that circulates refrigerant through a copper pipe loop field instead of the usual plastic pipe loops. The system uses nine separate loop and heat pump units, one of which provides hot water for restrooms on an as-needed basis. Called ‘direct exchange geothermal,’ this approach improves efficiency by piping the loop field refrigerant directly to the heat pumps without needing to transfer heat from a separate water-based loop field. The refrigerant is a non-toxic, non-polluting, ozone-safe product that is EPA approved.

Highlights – According to college president Rusty Stephens in a 2009 press release, “The building is operating on one-third the energy used in a typical building of its size.” In 2009 it was awarded LEED-Gold certification. The system’s half-inch copper pipes were buried in 75-foot long boreholes at a 45-degree angle instead of vertically, which is another innovation of this technology. “You get more pipe-run for a given depth of drilling,” explains project engineer Chuck Ladd of Williard Ferm Architects, which designed the building.

Challenges – A cathode protection system was installed to prevent corrosion of the copper pipes. This was required by state law, but the due to the chemistry of soil (within the acceptable pH range of between 6 and 11) it should be little needed. The long-term performance of this system, especially with its corrosion-fighting features, should meet or exceed its 20 year warranty.

Takeaway – In a typical GHP system, water from the loop field is circulated to the heat pumps, where a refrigerant draws heat from the water and then transfers it to the building’s HVAC system. In contrast, “an EarthLinked system has no middle man,” explains EarthLinked
technician John Webster—no intermediary transfer step which wastes 15 to 25% of the energy value. Heat (and cooling) from the ground loops is transferred via heat exchangers directly to the forced air HVAC system in the building.

Yale University

System—The new award-winning Kroon Hall, which houses the Yale School of Forestry and Environmental Studies, draws heating and cooling energy from four 1,500 foot deep open-loop standing column wells. Yale chose a standing column system because of limited space on its 300-year old urban campus. The 58,000 square-foot building opened in 2009 and earned LEED Platinum certification in 2010.

Highlights—The system provides one hundred percent of Kroon Hall’s cooling and twenty-five percent of its heating. The geothermal system is one of many strategies used in the building both to cut energy demand and produce its own energy and heat. For only a two point four percent ‘green premium’ in overall project costs, the building uses approximately fifty percent of the energy needed by a conventional structure of similar size and function.

Challenges—Because of local ordinances on well drilling, the original plan to put the four wells next to the building had to be scrapped. With its commitment to keeping Kroon as emissions-free as possible, the university agreed to pay the extra $500,000 required to locate the wells in nearby Sachem’s Wood.

Takeaway—Kroon Hall was designed to be carbon-neutral and now ranks as the flagship building in Yale’s campuswide effort to cut greenhouse gas emissions forty-three percent from 2005-2020, even after accounting for campus growth. Besides the geothermal system, there is a 100 kW photovoltaic array on the roof that provides twenty-five percent of the building’s electricity, a solar hot water system, abundant daylighting, an east-west orientation for maximum solar gain, and fan-free circulation of fresh air throughout the tall, barn-like structure. Fittingly, the building stands in a space formerly occupied by the fossil fuel-burning Pierson-Sage Power Plant.

“We hired an experienced geotechnical firm to design the system and dig a test well to determine the precise geothermal conditions underground—which is essential for anyone doing a standing column system. Wells must be drilled to the proper specifications or you won’t get the performance required.”

—Thomas Downing, Senior Energy Manager, Yale University
Aquifer Thermal Energy Storage (ATES)

‘Banking’ warmth or coolness in underground aquifers and then drawing it back when needed in another season is the principle behind ATES. (Another storage technology is Borehole Thermal Energy Storage—BTES—which stores heat or coolness in borehole fields in soil or rock.) Only one such ATES project is in operation today at Richard Stockton College, though such technologies may be well-suited for other college and university campuses that possess the right hydrogeologic conditions underground.

Richard Stockton College39 (NJ)

System – The college (featured above for its whole-campus closed loop geothermal system) completed the nation’s first commercial-scale Aquifer Thermal Energy Storage (ATES) system in 2008. This ‘seasonal cold storage’ technology works by chilling groundwater using winter’s naturally cold temperatures and then returning it to the aquifer until needed in summer. The heat exchange system protects the groundwater from contact with the air and other contaminants and is returned to the aquifer unchanged except for temperature. The system has six large wells—located in two clusters of three wells drilled 950 feet apart—along with piping, pumps and a cooling tower.

Highlights – “This is the next generation of geothermal,” explains physics professor Lynn Stiles. The system pumps 55º water up from the aquifer in winter and circulates it through a cooling tower, chilling it to 41º before returning it underground. In summer, this 41º water is pumped back up to chill buildings that are not connected to the older geothermal system. They conserve nature’s winter cold by storing it until summer’s heat arrives.

Challenges – ATES technology is under-explored in the United States. “There is not any funding in the U.S. Department of Energy for underground thermal storage,” notes Stiles who also works with the International Energy Agency. By comparison, Sweden currently has over 50 large scale ATES installations.

Takeaway – The ATES system is still in a trial period, but it seems to be passing the test. The cooling tower will be linked to the nearby geothermal well field that needs cooling to balance the excess heat build-up over the years. Stiles notes, “Stockton students and faculty are evaluating the ATES system in detail. Meters and other instruments were added to the project to facilitate analysis of energy savings. Our goal is to collect data so other institutions can plan similar systems with the confidence of knowing what the benefits will be.” Stiles points out that ATES is especially promising in the U.S. because a significant number of population centers are above adequately deep and abundant aquifers.

Lake-Source Cooling (a variation of pond/lake geothermal)

Taking advantage of a naturally-occurring thermal resource—the frigid waters of a deep northern lake—has been achieved by only one campus. Cornell University in the Finger Lakes region of upstate New York developed a one-of-a-kind system to tap into the low temperatures needed to air condition its campus in summer.

Cornell University40 (NY)

System – Cornell’s Lake Source Cooling (LSC) project, which began operating in 2000, uses an innovative open-loop-to-closed-loop system that pumps the deep 39º-41º F waters of Cayuga
Lake from 250 feet below the surface and two miles from shore to a heat exchange facility on the lake’s edge. There, it transfers its cold temperatures through stainless-steel plates to water circulating to campus in a closed loop. After absorbing warmth from the campus loop, the lake water is discharged close to the surface.

Highlights – This large-scale system cost around $58 million and led to an 86% reduction in energy needed for campus cooling. This is the equivalent to the electricity required to power around 2,300 homes annually. Savings linked to the LSC system have varied with the cost of electricity, according to Bert Bland, Cornell’s Energy and Sustainability Director. “In periods of high electric cost,” he notes, “the project has generated significant net savings of over $1 million per year, after debt service. LSC has reduced the uncertainty in the cost of cooling by reducing our dependence on variable electric rates.”

The Lake Source Cooling system also reduced Cornell’s CO₂ emissions associated with purchased electricity by around 10,000 tons a year, which represents approximately five percent of the central energy plant emission footprint. As an added benefit, several buildings in the city of Ithaca tap into the system to reduce community-wide energy use, cost and emissions. The LSC system has an anticipated life span of 75–100 years versus the 30–35 years of conventional chillers.

Challenges – Potential impacts on the lake’s ecosystem were explored in an environmental impact assessment that took four years. Effects of the system on lake water temperatures and aquatic life were determined to be negligible. The extra heat added to surface waters is the equivalent of an extra five hours of sunlight falling on the lake, and all the heat is shed in winter. During installation, measures were taken to minimize sediment disturbance and near-shore ecology.

Takeaway – The benefits of the LSC have outweighed its extra initial cost. In the mid-1990s, Cornell was faced with an immediate need to replace most of its refrigerant-based chillers due to their age and new laws banning ozone-depleting chlorofluorocarbons. Not only did it cut a significant part of its annual electrical bill and CO₂ emissions, but eliminated the need for chemical refrigerants and opened the way for handling the cooling loads of an expanding campus at minimal cost.

4 Hot Spots: Direct Use Geothermal and Electricity Generation

A) DIRECT USE GEOTHERMAL

Parts of the U.S. are underlain with accessible hot groundwater resources occurring near the surface to a mile or more underground. (See the ‘Geothermal Map of the U.S.’ on page 16.) These regions have the potential to provide campuses with heat energy in winter without the need for heat pumps to boost temperatures. The Oregon Institute of Technology and College of Southern Idaho, featured here, are two of four schools with direct-heat systems in place or under construction.

Oregon Institute of Technology

System – Energy required for district space heating and domestic hot water has been abundant and cheap thanks to the Oregon Institute of Technology being situated over a geothermal hot spot, which was first tapped in 1964 when the school was built. The system for the entire campus

“In 2002, the LSC received the Ecological Society of America’s Award of Special Recognition and Merit. Scientific studies, based on extensive lake sampling for the ten years of operation, have shown there is no significant negative impact on the lake water quality.”

~Robert R. Bland, Energy and Sustainability Director, Facilities Services, Cornell University
is supplied by three wells drilled 1,300-1,800 feet deep with a combined capacity of 980 gallons per minute. This geothermal source has been used for more than 45 years with no change in temperature or flow rate. The hot groundwater—emerging at 192º F—is first pumped into a holding tank and then piped across the campus to devices that distribute the heat. Two injection wells were added around 1990 to recharge the geothermal reservoir because disposing of spent groundwater into surface waters is no longer permitted by city code.

Highlights

- This system provides heat for all of OIT’s buildings, roughly 828,000 square-feet, and sidewalk snow melting for approximately 40,400 square-feet. (Distribution pipes are in tunnels below the sidewalks, keeping them warm in winter.) A 1996 report on the system noted that, over its first 30 years, annual operating costs were about $35,000, or about a nickel per square-foot per year. This includes maintenance salary, equipment replacement and cost of pumping. In all, this renewable resource saves OIT an estimated $1 million dollars per year in energy costs and avoids the release of 10,000 tons of CO₂.

Challenges

- As would be expected with a 45-year old system, pumps and other mechanical parts have worn out and needed replacement. The original steel distribution pipes that were buried in the ground corroded over time and were replaced by fiberglass pipes in the 1970s.

Takeaway

- Direct use systems are the most efficient application of high-temperature geothermal energy—if a school is lucky enough to have the right geology underfoot. Although electric pumps are still needed to move hot groundwater through the system, they eliminate the need for heat pumps, which saves both electricity and maintenance costs. OIT has long understood the educational value of its geothermal system and established the Geo-Heat Center back in 1975 to conduct research and provide outreach on geothermal energy.

B) ELECTRICITY GENERATION

In the U.S., tapping high temperatures underground to generate electricity has been achieved only in the geothermal regions of the West. Only the Oregon Institute of Technology has had the right combination of geography and institutional commitment to develop generating capacity on its campus lands.

Oregon Institute of Technology

System — The state of Oregon’s first geothermal electric power plant began operating in April 2010 on the Klamath Falls campus of OIT. Although this one is small, only 280 kW, it leads the way for a much larger plant that is in the planning stage. The current installation is a combined
A heat and power (CHP) binary cycle plant that uses the 192º F hot water from the three existing wells. Although below the boiling point, the water is hot enough to make a hydrocarbon refrigerant vaporize, which then spins the turbines of the generator. After giving off some of its heat to power the generator, the still-hot water is used in heating applications including greenhouse and aquaculture projects, before being injected back into the aquifer.

A new well for the larger plant was drilled in 2009 and pumping tests were completed in summer 2010. It is a mile deep (5,300 feet), has a capacity of 2,500 gallons per minute, and taps into a geothermal area where the water is around 198º F, though it was originally hoped that temperatures in the new well would approach 300º. The larger plant will also use a binary system to create electricity but because of the lower temperatures may only be able to produce around 700–800 kW of power. OIT is looking into a plant design that could create up to 1.2 MW if hotter aquifer sources are found in the future. See Appendix E for descriptions about various technologies used in geothermal power plants.

Highlights – The small plant produces 280 kW of power, or around ten percent of campus needs. Estimates made by summer 2010, after six months of operation, show that savings for electricity may run as high as $52,000 a year. The larger plant, when built and combined with the smaller plant, is expected to produce around seventy percent of campus electrical power needs.

Drilling the new well cost close to $4 million, and power plant construction is expected to cost about the same. This larger plant will produce roughly same amount of electricity that is produced by a commercial-sized wind turbine. It will supply sixty percent of OIT’s electrical demand and take a big bite out of the campus carbon footprint. Funding for the project comes from a U.S. Department of Energy grant and from Oregon state bonds and grants. Additional support may come from the Energy Trust of Oregon and Oregon Business Energy Tax Credit. “This power generation system will be the first of its kind on a campus and will be able to supply more than half of the base electrical load for campus, once both plants are operating,” notes John Lund, former director of OIT’s Geo-Heat Center. “Savings will be around $400,000 per year in electric bills alone.” In addition, OIT will be able to make use of the plant’s effluent before it is recharged back underground. Notes Lund, “The spent water could be used to backup the campus heating system, or sold to adjacent land owners for additional income estimated at about $200,000 annually.”

Challenges – The new well tapped into a much deeper part of the aquifer, but due to unexpected permeability of the underground fault structures, temperatures at a mile deep (198º F) were almost the same as the three existing shallower wells. Due to new campus buildings recently added to the system and lower well temperatures, the original goal of producing one hundred percent of OIT’s electricity likely will not be met.

Takeaway – In addition to generating renewable energy, Lund notes that these two power plants will be monitored remotely in real time, “so students on our campus and elsewhere can observe temperatures, flow rates, ‘parasitic’ loads such as pumps and fans, and then calculate efficiencies and energy output.” These systems will become a “classroom” for engineering and business students and for OIT’s new Renewable Energy Engineering program. The plants are also expected be a hot spot for visitors who will come to see and learn from the facility. Lund explains, “We already have given many tours for people from all over the world showing them our geothermal heating system, so the electric plants will complete the picture.”

“**It’s expensive to drill the wells and build a power plant, but once the infrastructure is in place you’ve got almost free energy. It runs when the sun doesn’t shine and where the wind doesn’t blow.”**

–John Lund, Former Director, Geo-Heat Center, Oregon Institute of Technology
Earth-Integrated Buildings

Earth-sheltered buildings are experiencing something of a resurgence on campus. There are many under construction right now and more in the planning phase. In the past, earth-sheltered buildings enjoyed energy savings as a side benefit. Most were built as a way to keep a low profile on campuses running out of room for new structures, or as demonstration projects.

The majority of earth-sheltered campus buildings or parts of buildings use a “cut and cover” method of construction, with a large excavation dug either into soil, bedrock or both. The structure is built within the excavation, covered with soil and then a plaza of vegetation or other surface material forms the top, at approximately ground level. Earth-bermed buildings use a variation of cut and cover, in which soil is sloped up against the walls and sometimes on the roof.

Other buildings create their underground space by mining into bedrock. The cavity required for the McAfee Library at Park University in Missouri was mined from limestone, with the sale of the quarried stone used to partially offset the cost of the building. Mining left the forested hillside above the library intact, preserving its habitat value for populations of deer, turkey and other wildlife. A building at the University of Minnesota (see below) used both cut and cover, and mined bedrock in its construction.

More than 140 campus buildings around the U.S. use some form of underground construction. For a list, see Appendix C. The following examples highlight the variety found on campuses today.

University of Arizona – Integrated Learning Center (ILC)

Opened – 2002
Square-footage – 119,000
Cost – $21 million
Underground levels – 1

Highlights – Thanks to its earth-integrated design, the Manuel Pacheco Integrated Learning Center occupies a unique setting on UA’s campus that both lends character to the building and makes it a great example of how the school is putting sustainability into practice. Built in the heart of campus below a palm tree-lined boulevard, it is all but invisible from even a short distance away. Two stairway plazas lead from the surface into the building and a large, open air courtyard only hints at the massive building hidden from view. The lawn that was restored over parts of the building lying beneath the campus mall has been described as “the state’s first green roof” on a public structure.

Challenges – Putting a major building in the middle of the busiest part of campus led to significant, though temporary, disruptions to pedestrian and car traffic flow. A huge volume of excavated material—100,000 cubic-yards equaling thousands of truckloads—had to be hauled away, but was cleared mostly at night to ease traffic congestion and neighborhood concerns. Waterproofing and designing the structure to handle 100 year flood events (of which two have happened since it was built) required double waterproofing and high-volume pumps to handle potential breaches. And two mundane, ongoing issues—due to the building’s placement on the mall and under two campus roads—have been to keep festival tents from driving their stakes.
into the mall lawn (potentially piercing the water barrier) and to reroute heavy vehicles from certain stretches of roadway. Brian Dolan, project manager of the ILC construction, states that these concerns have required constant vigilance by facilities staff.

Takeaway – Thanks to being underground, the building saves about forty percent of the energy that would have been lost to heat exchange through the walls of a conventional campus building. Savings are especially significant in summer months when daily temperatures exceed 100°F aboveground because energy needs are buffered by being 26 feet (on average) below ground. Lighting costs are also reduced during the day due to the windowed walls of the courtyards and four skylights that allow much natural light to brighten interior spaces.

Bowdoin College – Museum of Art

Re-opened – 2007

Underground levels – 2

Square footage – Renovation of the Walker Art Building (which contains the college Museum of Art) added 12,500 square-feet—most of which was underground—for a new total of 32,500 square-feet.

Cost – Total project cost $18 million but because the underground portion was part of a larger renovation and space enhancement, separate costs for the underground structure and geothermal cooling system are not available.

Highlights – This project was a renovation and expansion of a historic 1894 building, and came 30 years after a 1976 expansion which put a second level below the original basement. In the recent renovation, the lowest floor was dug down a bit more to improve gallery space, and a large single-level underground space was added outside the building footprint. This structure contains the main entryway, visitor services and museum gift shop and is topped by a glass-enclosed pavilion set several feet away from the original building. Geothermal wells were added as part of the project.

Challenges – Integrating the new space with the old, and keeping the original building steady while its foundation was lowered posed unique engineering challenges. According to Suzanne Bergeron, Assistant Director of Museum Operations, coming up with the right design for the renovation was a complicated process. “We spent a lot of time figuring out how to blend the historic with the new.”

Takeaway – By going below-grade, the museum added new space while visually complementing the original landmark structure. The innovative design earned it one of the 2008 American Architecture Awards. The Walker Art Building is also Bowdoin’s fourth geothermal building. Its five standing-column open loop wells provide heating and cooling using heat pumps. Prior to the renovation there was no cooling system, which was hard on both the staff and works of art.
University of Oregon – Lorry I. Lokey Laboratories
(See photo and floor plan above, on page 19)

Opened – 2007
Square-footage – 26,500
Cost – $16 million
Underground levels – 1

Highlights – Lokey Laboratories is a signature research center of the Oregon Nanoscience and Microtechnologies Institute (ONAMI), a consortium of schools and high-tech companies. The floor of the building lies as much as 20 feet below the surface and is embedded seven feet into the underlying sandstone. Lawn and landscape vegetation cap the site at ground level, preserving the area’s status as a dedicated open space.

Challenges – During the excavation of bedrock, the noise and vibrations negatively affected nearby research projects involving zebra fish and small mammals, but only temporarily. As the future home of $25 million worth of high-tech research equipment, extra care was given to waterproofing the building. The methods used included redundant systems with extra pumps and emergency power backup. So far, only small leaks have occurred where the new structure joins an existing building. Providing natural light in Eugene’s often gray climate is important, and a skylight offers a chance for occupants to keep tabs on the weather.

Takeaway – By being both underground and anchored into bedrock, the building is one of the quietest, vibration-free nanoscience research centers in the world. It is also insulated from electromagnetic and radio frequency fields along with being very energy efficient. There are no external solar heat loads, and the internal loads are about the same as any building. Though it was an expensive structure to build, going underground “saved us a bunch of money,” according to campus planner Fred Tepfer.

University of Minnesota-Twin Cities – Civil Engineering Building
(See photo above, on page 18)

Opened – 1982
Square-footage – 150,000
Underground levels – 5

Highlights – Originally conceived during the energy crisis of the 1970s, UM’s Civil Engineering building was both a demonstration for energy conservation and a showcase of new technologies developed for underground spaces. It contains classrooms, labs, offices, commons areas and a four-story atrium for large civil engineering experiments. It was constructed using both cut-and-cover and mining techniques. The lowest two levels (of five) were mined from soft sandstone located beneath 30 feet of harder limestone. More than ninety-five percent of the building is below the surface, with the lowest level 112 feet deep.

Challenges – Sunlight-tracking mirrors in the above-ground heliostat did not function well in the beginning, but were replaced in 1987 and now channel daylight down to the lowest level. Special fire-safety features were required for the bottom levels, including two separate stairwells that automatically pressurize during a fire to keep out smoke.
Takeaway – This building, plus Williamson Hall (opened 1977) were demonstration projects of the now disbanded Underground Space Center. Much research was conducted and published on these innovative structures. A more recent addition underground is the Andersen Library which opened in 2000 and holds the university archives in space mined deep below the larger, above-ground part of the building.

Oklahoma City Community College – Health Professions Center

Opened – 2008
Square-footage – 46,000
Cost – $5.8 million
Underground levels – 1

Highlights – The first floor of this two-story building is earth-bermed on three sides and landscaped primarily with drought-resistant Bermuda grass. According to Director of Facilities J.B. Messer, it operates at a thirty percent lower energy cost than comparable campus buildings. OCCC’s first building, which opened in 1972 and is still called the Underground Building, is also earth-bermed. In 2007 a second story was added.

Challenges – The campus area experiences high rainwater runoff during storms, so during construction the campus staff closely monitored the installation of waterproofing and drainage systems. Quality assurance is the key to preventing leaks, says Messer. “It becomes a real fiasco if you don’t get the waterproofing right the first time.”

Takeaway – Because of its strong walls and earth-bermed sides, this building has been designated a tornado and storm shelter—in a state prone to severe summer storms.

University of Wisconsin-Green Bay – Instructional Services & Student Services Buildings

Opened – Instructional Services 1969; Student Services 1972
Square-footage – Instructional Services 66,000; Student Services 44,000
Cost – Approximately $4 million each
Underground levels – 1

Highlights – The Instructional Services building was one of three original buildings when UW-Green Bay opened in 1969. It and the Student Services building are on opposite sides of the nine-story campus library and were designed to create an open space around the library. Each of these one-story structures is topped by a ground-level paved plaza, with planters for shrubs and other ornamentals. Banks of windows on the south and north sides let in daylight from dug-out courtyards. Retired facilities director Les Raduenz said the underground design creates a work environment that compares well with other campus buildings. “You don’t get the feeling of being in a cave thanks to all the daylight coming in.”

Challenges – Over the years, the roofs developed leaks which required the replacement of waterproofing membranes and drains. The main problem turned out to be a breakdown of the adhesive that joined the seams of the rubber membranes. Newer adhesives used in the retrofit are expected to last much longer.
Takeaway – To allow students and staff to move about the campus in comfort despite Green Bay’s northern climate, all campus buildings are interconnected by a series of underground or below-grade concourses—‘the tunnels.’ Many have windows on one or two sides, excavated to access daylight. Since everyone uses them, they foster much interaction and community spirit among students, faculty and staff. And because a lot of equipment and supplies also travel between buildings through the tunnels, they result in significantly less campus vehicle use and air loss through doorways. In 2001, the three-story, 130,000 square-foot Mary Ann Cofrin (MAC) building was added to the campus. As part of the project, five classrooms were built underground (totaling 12,000 square feet), flanking the underground concourse that connects the MAC building with the library. Natural light is provided by a dugout along one side of the concourse walkway and skylights over the classrooms.

St. John’s University – Seton Apartments

Opened – 1982
Square-footage – 4,500 per building
Cost – $225,000 per building
Underground levels – 2

Highlights – Each of the five identical Seton Apartment buildings contains four student apartments which each follow the same efficient plan. The top floor is partially below grade, with a wall of windows facing south that floods the interior with direct and reflected sunlight. The second level is fully underground. The lawn-covered roof, which faces north and deflects cold winter winds, is covered with 16 inches of soil underlain with waterproof membranes and insulation. The turf requires no additional watering.

Challenges – In recent years, the buildings developed mold problems due to leaks. A complete renovation was required, including excavation of the walls and roofs, re-waterproofing, tuck-pointing, replacing blocks and cleaning the drain tile. The work was completed in 2008 and there were no complaints from residents in the 2008-09 school year. To keep humidity in check, bathroom exhaust fans run 24/7.

Takeaway – It is extremely important to ensure proper initial waterproofing and choose cleanable drain tiles, according to Buildings and Facilities Manager Gary Jorgensen. “It’s expensive and laborious to do repairs on underground buildings because they have to be dug out to get at the walls and roof.” Due to combined costs for ventilation, dehumidifiers and electric heating, the buildings have not been any cheaper to run than other residences on campus—though when built in 1982 they were expected to cost half as much. For two years St. John’s experimented with native grasses on the roofs, but people thought they looked unkempt and the vegetation trapped wind-blown trash which was a maintenance concern. They are now planted with turf grass and mowed.

Cross section of the Seton Apartment buildings at St. John’s from a 1984 article in Solar Age magazine.
The future of geothermal energy and earth-integrated architecture on college and university campuses looks promising indeed. The snapshots above of 35 campuses with either geothermal installations or underground buildings are just a modest percentage of the total of 77 schools and 230 buildings across the country (see Appendices A and C) that are teaching—by example—the art of the possible. But these are just a hint of what’s to come.

In this final section we explore several important themes that bear further emphasis. First, renewable energy technologies on campus not only have financial, environmental and societal benefits, they also can yield significant educational value. Most schools, it seems to us, appear to have under-utilized those potential learning opportunities and so we encourage all schools to do more.

Next, we look briefly at the potential for careers in geothermal technologies. There is, of course, massive job growth anticipated in all renewable energy fields—and community colleges in particular have heeded that call. Finally, we raise the question that must always be asked by a wildlife protection organization: can we move forward with minimal impact on the environment and on the animal and plant life which depend on it for their long term survival? The National Wildlife Federation’s mission is to protect wildlife and natural systems for our children’s future. College and university campuses offer a shining hope to instill that value in the next generation of national leaders.

V. GEOTHERMAL TECHNOLOGIES ON CAMPUS: PRESENT AND FUTURE

The future of geothermal energy and earth-integrated architecture on college and university campuses looks promising indeed. The snapshots above of 35 campuses with either geothermal installations or underground buildings are just a modest percentage of the total of 77 schools and 230 buildings across the country (see Appendices A and C) that are teaching—by example—the art of the possible. But these are just a hint of what’s to come.

In this final section we explore several important themes that bear further emphasis. First, renewable energy technologies on campus not only have financial, environmental and societal benefits, they also can yield significant educational value. Most schools, it seems to us, appear to have under-utilized those potential learning opportunities and so we encourage all schools to do more.

Next, we look briefly at the potential for careers in geothermal technologies. There is, of course, massive job growth anticipated in all renewable energy fields—and community colleges in particular have heeded that call. Finally, we raise the question that must always be asked by a wildlife protection organization: can we move forward with minimal impact on the environment and on the animal and plant life which depend on it for their long term survival? The National Wildlife Federation’s mission is to protect wildlife and natural systems for our children’s future. College and university campuses offer a shining hope to instill that value in the next generation of national leaders.

1 An Extraordinary Educational Opportunity

Geothermal systems and earth-sheltered architecture, regardless of their respective scales of installation or technology type, may be mostly hidden from view underground—but lessons about them can be lifted up and brought into educational programming within and beyond the classroom. As Professor Koester mentions in his foreword, students who study engineering, energy technologies, green buildings and other disciplines have much to learn about systems-
based energy design especially on campuses that use district (multiple buildings) or whole-campus heating/cooling systems.

As part of their educational experience, students on campuses with geothermal, solar or other types of clean energy systems can be asked to track system performance over time, evaluate returns on investment and educate the wider campus and public communities. At places such as the Oregon Institute of Technology and Richard Stockton College, students sometimes give tours to show their geothermal installation to peers and visitors. When geothermal systems are metered and incorporated into real-time energy monitoring, students and building occupants can begin to visualize energy and resource use, compare operational performance and follow trends across monthly climate variation and/or building types.

And educational options aren’t only for an individual college or university. Thanks to the internet, schools can educate not only their campus community but also the world beyond by showcasing their campus geothermal systems and other sustainability initiatives with descriptive narratives and real-time performance ‘dashboards’ posted to campus websites. Creating and updating such information sources is a perfect opportunity for students to make a far-reaching and lasting contribution. In short, as with any project on campus that conserves resources, the benefits beyond the purely environmental or financial aspects can be substantially educational—for students, faculty, staff and the wider community.

Expanding Career Pathways in Renewable Energy

The geothermal industry—in the electricity-generating sector alone—saw an estimated twenty-six percent surge in domestic geothermal projects since 2009, according to a recent U.S. Department of Energy report. This is good news for colleges and universities, as the report notes: “This substantial growth will require an educated and trained workforce to locate new geothermal resources, develop new reservoirs, and build and administer the power plants.” The Geothermal Energy Association (GEA) estimates that geothermal energy employed 18,000 people in 2008—5,000 direct and 13,000 supporting positions, not including those employed in the manufacture or installation of geothermal heat-pumps. Employment in geothermal energy is expected to continue to increase in coming years.

Energy analysts hold that geothermal technologies offer more and better jobs than conventional fossil fuel technologies. For example, total employment for a 500 MW natural gas plant is around 2,500 workers versus around 27,000 for a geothermal energy plant. In its 2010 study, “Green Jobs through Geothermal Energy,” the GEA notes that geothermal industries offer relatively higher-paying and longer-term jobs than local averages and that one plant can involve as many as 860 different people with a broad range of skills.

Career pathways in the geothermal power industry will be open to skilled workers in a wide variety of fields. The GEA green jobs study offers detailed charts on types of jobs involved and education levels required at each phase of project implementation from start-up to exploration, to feasibility (test) drilling, installation drilling and site construction, to operations and maintenance. Roles include degreed professionals such as engineers, geologists and geophysicists as well as ‘green collar’ laborers who work as drill rig operators, welders, mechanics and safety managers. In support positions, geothermal development will also require greater numbers of lawyers, project managers, archeologists, sales people, assembly workers and administrative staff.
Job opportunities and career paths in the ground-source geothermal heat pump (GHP) industry, similarly, are expected to increase. The use of GHP technologies represented four percent of new single-family home HVAC heating/cooling tonnage in 2008 rising to six percent in 2009, according to GEO. It cites the U.S. Department of Energy’s goal for industry growth of one million GHP installations annually by 2017—a cumulative total of 3.3 million GHP installations—creating an estimated 100,000 new jobs and reducing U.S. annual CO₂ emissions by approximately 26 million metric tons.

Among the professions and trades benefiting from the GHP industry are water well drilling companies that have entered the market for drilling boreholes to install loop fields and wells. HVAC companies have expanded their business to include installation and maintenance of geothermal heat pumps and related equipment. Architects and design firms have embraced geothermal alternatives, working with clients on GHP and direct-heat projects at all levels.

To meet the increasing demand for education and training, programs in renewable energy technologies, including geothermal, at community colleges and other postsecondary institutions across the U.S. have been going strong. An internet search quickly brings up geothermal courses and programs at dozens of schools. And places like the Energy Center of Wisconsin are meeting the needs of working building industry technicians and professionals with courses on commercial and residential geothermal systems.

Occupational Information Network (O*NET)

The Occupational Information Network (O*NET) is a national database of information about the evolving world of occupations, created with sponsorship from the U.S. Department of Labor. It provides resources for job searchers and employers through interactive applications for exploring and searching occupations.

Among its features, O*NET highlights ‘Green’ occupations as well as those having a ‘Bright Outlook.’ Green economy activities and technologies have increased the demand for green workers, including geothermal technicians, geothermal production managers and other occupations involved in renewable energy fields. The O*NET database provides current information about both geothermal electrical generation and heat pump occupations. Bright Outlook occupations (including emerging occupations) are jobs expected to grow rapidly in this decade. Geothermal jobs are among those predicted to multiply faster than most occupations over the period 2008-2018, with a significant increase in numbers of openings.

Protecting Wildlife and the Environment

No energy source is free of environmental impacts. Although geothermal systems can dramatically reduce energy use and greenhouse gas emissions associated with heating and cooling buildings, they are not a panacea and must be carefully designed and monitored to safeguard environmental values such as biological diversity and water quality. As documented in many of the case studies within this guide, campus leaders are evaluating these impacts and devising best practices to avoid or reduce them. Schools employing open loop and aquifer-based systems, in particular, are evaluating the impact of underground water temperature changes on microbes and other life forms, aiming to maintain normal seasonal water temperatures, protect freshwater resources and prevent any harm to wildlife.
The use of antifreeze or refrigerants in some geothermal systems that may mix with groundwater or release ozone-depleting chemicals and greenhouse gases (CFCs and HCFCs) is another issue of concern, yet little is known about these impacts. By optimizing building efficiency, campus designers can reduce the required quantity of bore-holes (and resulting closed loop system field size) or minimize open loop well-withdrawal requirements, further reducing environmental changes. In the final analysis, however, any geothermal technology impacts must be evaluated and balanced against the alternative environmental harm that would be caused by other sources of heating and cooling, primarily those that require the extraction, transport and burning of fossil fuels. It always should be the case that conservation and efficiency measures are the first priority before a campus chooses to employ geothermal technologies or any type of clean energy system for buildings.
APPENDIX A

College and University Geothermal Systems - Completed or Under Construction

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>STATE</th>
<th>SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yavapai College</td>
<td>AZ</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Feather River College</td>
<td>CA</td>
<td>Closed Loop Vertical and Horizontal, and Artesian Well Cooling</td>
</tr>
<tr>
<td>Ohlone College</td>
<td>CA</td>
<td>Closed Loop Horizontal</td>
</tr>
<tr>
<td>Colorado Northwestern Community College, Craig campus</td>
<td>CO</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Eastern Connecticut State University</td>
<td>CT</td>
<td>Open Loop - Standing Column</td>
</tr>
<tr>
<td>Fairfield University</td>
<td>CT</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Yale University</td>
<td>CT</td>
<td>Open Loop - Standing Column</td>
</tr>
<tr>
<td>University of Central Florida</td>
<td>FL</td>
<td>Open Loop</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td>GA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Hawaii at Manoa</td>
<td>HI</td>
<td>Open Loop - Injection well return</td>
</tr>
<tr>
<td>Luther College</td>
<td>IA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Maharishi University of Management</td>
<td>IA</td>
<td>Closed Loop Horizontal</td>
</tr>
<tr>
<td>University of Northern Iowa</td>
<td>IA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Boise State University</td>
<td>ID</td>
<td>Direct Heat - under construction</td>
</tr>
<tr>
<td>College of Southern Idaho</td>
<td>ID</td>
<td>Direct Heat Open Loop</td>
</tr>
<tr>
<td>Columbia College</td>
<td>IL</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Heartland Community College</td>
<td>IL</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>John Wood Community College</td>
<td>IL</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Lake Land College</td>
<td>IL</td>
<td>Closed Loop Vertical-Hybrid</td>
</tr>
<tr>
<td>University of Illinois, Chicago</td>
<td>IL</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Illinois, Rockford</td>
<td>IL</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Western Illinois University</td>
<td>IL</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Ball State University</td>
<td>IN</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Goshen College</td>
<td>IN</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Kansas</td>
<td>KS</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Berea College</td>
<td>KY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Harvard University</td>
<td>MA</td>
<td>Open Loop - Standing Column and Closed Loop Vertical</td>
</tr>
<tr>
<td>Harford Community College</td>
<td>MD</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>McDaniel College</td>
<td>MD</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Bowdoin University</td>
<td>ME</td>
<td>Open Loop - Standing Column</td>
</tr>
<tr>
<td>Colby College</td>
<td>ME</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Maine Farmington</td>
<td>ME</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Southern Maine</td>
<td>ME</td>
<td>Open Loop - Standing Column</td>
</tr>
<tr>
<td>Davenport University</td>
<td>MI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Grand Valley State University - Allendale</td>
<td>MI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Lansing Community College</td>
<td>MI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Lawrence Technological University</td>
<td>MI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Minnesota Arboretum</td>
<td>MN</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Drury University</td>
<td>MO</td>
<td>Closed Loop</td>
</tr>
<tr>
<td>University of Montana</td>
<td>MT</td>
<td>Open Loop - Injection well return</td>
</tr>
<tr>
<td>University of North Carolina Chapel Hill</td>
<td>NC</td>
<td>Closed Loop Vertical</td>
</tr>
</tbody>
</table>

VI. APPENDICES

This table names colleges and universities using geothermal energy*—either through ground-source heat pumps (open or closed loops), direct heating, aquifer thermal storage systems (ATES) or to generate electricity.

As of February 2011, the list contains 86 schools from 38 states.

*Our apologies to any schools using geothermal technologies missing in this list. NWF will periodically post an updated list on the Campus Ecology website, so if your school belongs here please let us know its name and type of system. Send an email to campus@nwf.org.
<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>STATE</th>
<th>SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warren Wilson College</td>
<td>NC</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Wilson Community College</td>
<td>NC</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Turtle Mountain Community College</td>
<td>ND</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Plymouth State University</td>
<td>NH</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Drew University</td>
<td>NJ</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Richard Stockton College</td>
<td>NJ</td>
<td>Closed Loop Vertical and Aquifer Thermal Storage System (ATES)</td>
</tr>
<tr>
<td>New Mexico Institute of Mining and Technology</td>
<td>NM</td>
<td>Direct Heat</td>
</tr>
<tr>
<td>Adelphi University</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Bard College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Columbia University</td>
<td>NY</td>
<td>Open Loop - Standing Column</td>
</tr>
<tr>
<td>Cornell University</td>
<td>NY</td>
<td>Open Loop - Lake source</td>
</tr>
<tr>
<td>Hamilton College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Ithaca College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Paul Smith's College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Skidmore College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>SUNY Sullivan County Community College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>SUNY Brockport</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>SUNY Dutchess Community College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>The General Theological Seminary</td>
<td>NY</td>
<td>Open Loop Standing Column</td>
</tr>
<tr>
<td>Vassar College</td>
<td>NY</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Oberlin College</td>
<td>OH</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Rogers State University</td>
<td>OK</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Oklahoma State University</td>
<td>OK</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Oklahoma State University Institute of Technology at Okmulgee</td>
<td>OK</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Lane Community College</td>
<td>OR</td>
<td>Closed Loop Horizontal and Open Loop</td>
</tr>
<tr>
<td>Oregon Institute of Technology</td>
<td>OR</td>
<td>Direct Heat (since 1964) and Electric Generation (since 2010)</td>
</tr>
<tr>
<td>Portland State University</td>
<td>OR</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Oregon</td>
<td>OR</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Allegheny College</td>
<td>PA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>California University of Pennsylvania</td>
<td>PA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Pennsylvania Morris Arboretum</td>
<td>PA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Mercyhurst College</td>
<td>PA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Mercyhurst College - North East</td>
<td>PA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>West Chester University</td>
<td>PA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Furman University</td>
<td>SC</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Medical University of South Carolina</td>
<td>SC</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Lipscomb University</td>
<td>TN</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Rice University</td>
<td>TX</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Utah</td>
<td>UT</td>
<td>Underground thermal storage system</td>
</tr>
<tr>
<td>Champlain College</td>
<td>VT</td>
<td>Open Loop - Injection well return</td>
</tr>
<tr>
<td>Pacific Lutheran University</td>
<td>WA</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>College of Menominee Nation</td>
<td>WI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Northland College</td>
<td>WI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>University of Wisconsin-Madison</td>
<td>WI</td>
<td>Closed Loop Vertical</td>
</tr>
<tr>
<td>Laramie County Community College</td>
<td>WY</td>
<td>Closed Loop Vertical</td>
</tr>
</tbody>
</table>
APPENDIX B

Additional Resources on Geothermal Systems

Government Sites

U.S. Department of Energy (DOE) – Geothermal
The Department of Energy offers a gateway to resources on geothermal energy and encourages diversification in domestic energy supply options.
http://www.energy.gov/energysources/geothermal.htm

The DOE provides general information about all types of geothermal energy and links to additional sources.
http://www1.eere.energy.gov/geothermal

Federal Geothermal Research Program Update, Fiscal Year 1999
This 500-page collection of research papers by the nation’s leading geothermal energy experts includes topics on all types and aspects of geothermal energy.

Trade Organizations

Geothermal Energy Association
GEA provides information on current and potential applications of U.S. geothermal power plants and cost/benefit analyses of geothermal energy production.
http://geo-energy.org

Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry – Geothermal +Heat Pump Consortium
GEO, the non-profit trade association of the geothermal heat pump industry has extensive links to geothermal heat pump professionals across the country and up-to-date information about current technology.
http://www.geoexchange.org

Geothermal Resources Council
The GRC is a professional educational association for the international geothermal community. It works with national and international academic institutions, industry and government agencies to encourage economically and environmentally sound development of geothermal resources.
http://www.geothermal.org
Research and Education Centers

Geo-Heat Center
The Geo-Heat Center at the Oregon Institute of Technology is a research facility and information source for consultants, developers, potential users and the general public on the development of direct heat utilization of geothermal energy.
http://geoheat.oit.edu

Great Basin Center for Geothermal Energy
The Great Basin Center at the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin.
http://www.unr.edu/geothermal

Geothermal Education Office
This nonprofit organization based in California produces and distributes educational materials about geothermal energy to schools, energy/environmental educators, libraries, industry and the public.
http://geothermal.marin.org

Articles

Universities Lead the Charge to Mine the Heat Beneath Our Feet
by Paul Tolmé, ClimateEdu, September 30, 2008
http://www.nwf.org/campusEcology/climateedu/geothermal.cfm

The Heat Movers
by Paul Tolmé, ClimateEdu, November 13, 2008

Ground-Source Heat, from Lipscomb to Yale
by Paul Tolmé, ClimateEdu, December 9, 2008

Hot and Steamy: Ground-Source on Campus
by Maryruth Belsey Priebe, ClimateEdu, September 15, 2009
http://www.nwf.org/campusecology/climateedu/articleView.cfm?iArticleID=102

Geothermal Energy: Tapping the Potential
by Bill Johnson, APPA Facilities Manager, November/December 2008
This table, which lists earth-integrated campus buildings, is drawn from a compilation of over 675 earth-integrated public and commercial buildings in the U.S. These buildings represent the range of underground campus structures. Some are completely subsurface, while others have a significant portion underground or are built with earth-bermed sides and roofs.

As of February 2011, the list contained 145 structures on 77 campuses in 32 states and the District of Columbia. Where known, construction dates are given.

*Our apologies to any schools using earth-integrated technologies missed from this list.

APPENDIX C

Earth-Integrated Campus Buildings – Completed or Under Construction

AZ
- Hayden Library (1989), Arizona State University, Tempe
- Nelson Fine Arts Center (1990), Arizona State University, Tempe
- Manuel Pacheco Integrated Learning Center (2002), University of Arizona, Tucson
- Bear Down Gym shooting range, University of Arizona, Tucson

CA
- Bechtel Engineering Center (1980), University of California, Berkeley
- Law School library and academic building (under construction; 2011), University of California, Berkeley
- Northwest Animal Facility (1991), University of California, Berkeley
- Student Athlete High Performance Center (under construction; 2011), University of California, Berkeley
- University Art Museum (1970), University of California, Berkeley
- Main Library addition (1994), University of California, Berkeley
- Geisel Building addition (1993), University of California, San Diego
- Love Library (1971, addition in 1996), San Diego State University, San Diego
- Beckman Hall (1993), Harvey Mudd College, Claremont
- Student Health Services building, San Francisco State University, San Francisco
- Music Center (1996), University of California, Santa Cruz
- Cancer Treatment Center (2004), Stanford University, Stanford
- James H. Clark Center auditorium (2003), Stanford University, Stanford
- Lucas Center expansion (2000), Stanford University, Stanford

CT
- Cross Campus Library (1971), Yale University, New Haven
- Beinecke Library (1963), Yale University, New Haven
- Child Study Center’s Child Development Unit (1976), Yale University, New Haven
- Ingalls Hockey Rink (1958, addition in 2009), Yale University, New Haven

DC
- Yates Field House (1979), Georgetown University, Washington, D.C.

DE
- Rodney Fitness Center (1997), University of Delaware, Newark

FL
- Auditorium (1980), University of Florida, Gainesville
- J.C. Dickinson Jr. Hall (1970), University of Florida, Gainesville
- Science building (1958), Florida Southern College, Lakeland

IA
- University Union (1960), University of Northern Iowa, Cedar Falls
- Carver-Hawkeye Sports Arena (1980), University of Iowa, Iowa City
- School of Art and Art History Building, University of Iowa, Iowa City
- Ballou Library addition (1996), Buena Vista University, Storm Lake
- Siebens Forum (1985), Buena Vista University, Storm Lake
<table>
<thead>
<tr>
<th>State</th>
<th>Projects</th>
</tr>
</thead>
</table>
| IL | Assembly Hall addition (1999), University of Illinois, Urbana-Champaign
Undergraduate Library (1969), University of Illinois, Urbana-Champaign
Interdivision Research building (2004), University of Chicago, Chicago
Mansueto Library (under construction; 2010), University of Chicago, Chicago |
| IN | Library expansion (1989), Anderson University, Anderson
Simon Hall (2007), Indiana University, Bloomington
Fitzpatrick Hall of Engineering (1979), University of Notre Dame, South Bend
John Hicks Undergraduate Library (1982), Purdue University, West Lafayette
PRIME Lab (1969), Purdue University, West Lafayette |
| KS | Anderson Family Football Complex (2008), University of Kansas, Lawrence |
| LA | Museum of Natural History Research facility (1968), Tulane University, Belle Chasse |
| MA | Du Bois Library (2005), University of Massachusetts, Amherst
Bauer Laboratory building (2002), Harvard University, Cambridge
Cabot Science Center (1970), Harvard University, Cambridge
Countway Library (1960), Harvard University, Cambridge
Fogg Art Museum addition (under construction; 2013), Harvard University, Cambridge
Integrated Science & Engineering Library (2006), Harvard University, Cambridge
New College Theater (2008), Harvard University, Cambridge
Northwest Science building (2007), Harvard University, Cambridge
Pusey Library (1976), Harvard University, Cambridge
Lyman Conservatory expansion (2002), Smith College, Northampton
University Club and food court (2003), Smith College, Northampton
Higgins Hall (2000), Boston College, Chestnut Hill
Five-College Library Repository (Amherst College, Hampshire College, Mount Holyoke
College, Smith College and University of Massachusetts-Amherst) (2002), Hadley |
| MD | Greenfield Library annex (1996), St. John’s College, Annapolis
Peabody Institute (1980), Johns Hopkins University, Baltimore |
| ME | Museum of Art expansion (2007), Bowdoin College, Brunswick
Hawthorne-Longfellow Library expansion (1983), Bowdoin College, Brunswick |
| MI | Margaret Dow Towsley Center organ studio (1985), University of Michigan, Ann Arbor
Law Library addition (1979), University of Michigan, Ann Arbor |
| MN | Seton Apartments student housing (1982), St. John’s University, Collegeville
Solon Campus Center (1995), University of Minnesota, Duluth
Anderson Library (2000), University of Minnesota, Minneapolis
Civil Engineering building (1982), University of Minnesota, Minneapolis
Williamson Hall (1977), University of Minnesota, Minneapolis |
| MO | McCafée Library (1988), Park University, Parkville |
NC
- Media Center (1980), Mars Hill College, Mars Hill

NJ
- East Pyne addition (2003), Princeton University, Princeton
- Firestone Library (1970, addition in 1990), Princeton University, Princeton
- Marquand Art Library addition to McCormick Hall (2003), Princeton University, Princeton
- McDonnell Hall (1998), Princeton University, Princeton
- Robertson Hall addition (2002), Princeton University, Princeton
- Fine Hall (1969), Princeton University, Princeton
- Jadwin Gym (1969), Princeton University, Princeton
- Math-Physics Library (1970), Princeton University, Princeton
- Whitman Theater & Servery (2007), Princeton University, Princeton

NM
- Centennial Science & Engineering Library (1986), University of New Mexico, Albuquerque
- Parish Library (1987), University of New Mexico, Albuquerque
- Regener Hall (1972), University of New Mexico, Albuquerque
- Zimmerman Library addition (1993), University of New Mexico, Albuquerque

NY
- Physics Laboratory, State University of New York (SUNY), Albany
- Heimbold Visual Arts Center (2004), Sarah Lawrence College, Bronxville
- Facilities Management building, State University of New York (SUNY), Fredonia
- Sage Hall addition (1998), Cornell University, Ithaca
- University Campus Store (1970), Cornell University, Ithaca
- Undergraduate Library (1980), Cornell University, Ithaca
- Johnson Museum of Art addition (under construction; 2010), Cornell University, Ithaca
- Kroch Library (1992), Cornell University, Ithaca
- Campus Bookstore, Ithaca College, Ithaca
- Textor Hall (classrooms), Ithaca College, Ithaca
- Garden Apartments (one building is earth sheltered), Ithaca College, Ithaca
- Tully Hall (1969), The Juilliard School, Manhattan
- Main building expansion (2009), New York Law School, Manhattan
- Wellness Center (2008), College of New Rochelle, New Rochelle
- Avery Hall addition (1974), Columbia University, New York City
- Marcellus Hartley Dodge Physical Fitness Center (1974), Columbia University, New York City
- Classrooms beneath Gould Plaza (2009), New York University, New York City
- Law Library addition (1986), New York University, New York City
- Performing Arts Center (2008), Rensselaer Polytechnic Institute, Troy

OH
- Shoker Science Center (1978), Bluffton College, Bluffton
- Aronoff Center (1996), University of Cincinnati, Cincinnati
- Health Sciences building (1998), Cleveland State University, Cleveland
- Library addition (2007), Cleveland Institute of Music, Cleveland
- Wexner Center for the Arts (1989), Ohio State University, Columbus
- Library (1972), Sinclair Community College, Dayton
- Dana Center (1980), Medical College of Ohio, Toledo

OK
- Jones Museum of Art (2005), University of Oklahoma, Norman
- Original main building (1972), Oklahoma City Community College, Oklahoma City
- Health Professions Center (2008), Oklahoma City Community College, Oklahoma City
OR
Lokey Laboratories Building (2007), University of Oregon, Eugene

PA
Dalton Hall addition, Bryn Mawr College, Bryn Mawr
Rhys Carpenter Library, Bryn Mawr College, Bryn Mawr
Thomas Library addition (1997), Bryn Mawr College, Bryn Mawr
Houston Hall addition (2000), University of Pennsylvania, Philadelphia
Penn Museum addition (2005), University of Pennsylvania, Philadelphia
Roberts Proton Therapy Center (2009), University of Pennsylvania, Philadelphia
Posner Family Collection Gallery (2004), Carnegie Mellon University, Pittsburgh

RI
Multidisciplinary Teaching Lab (1969), Brown University, Providence

SC
West Quad Learning Center (2004), University of South Carolina, Columbia
Strom Thurmond Institute (1989), Clemson University, Clemson

TX
University Center Satellite (1973), University of Houston, Houston
University Center Underground (1973), University of Houston, Houston
Law Library, University of Houston (1969), Houston
Cullen Performance Hall Annex (1988), University of Houston, Houston
Law School Library addition (1992), Texas Tech, Lubbock

UT
Eyring Science Center addition (2003), Brigham Young University, Provo
IT building (2001), Brigham Young University, Provo
Lee Library addition (2000), Brigham Young University, Provo
Marriott Library addition (1996), University of Utah, Salt Lake City
Utah Museum of Natural History (under construction; 2011), University of Utah, Salt Lake City
Student Services building, University of Utah, Salt Lake City

VA
Burchard Hall (1998), Virginia Tech University, Blacksburg
Special Collections Library (2004), University of Virginia, Charlottesville

WA
Intramural Activities building (IMA) addition (1982), University of Washington, Seattle
Law Library (2003), University of Washington, Seattle
Medical Center Surgery Pavilion (2003), University of Washington, Seattle
Mueller Hall (1990), University of Washington, Seattle

WI
Sigurd Olson Environmental Institute (1981), Northland College, Ashland
Instructional Services building (1969), University of Wisconsin-Green Bay, Green Bay
Student Services building (1972), University of Wisconsin-Green Bay, Green Bay
Mary Ann Cofrin building (2001), University of Wisconsin-Green Bay, Green Bay
Computer Services Department, Western Wisconsin Technical College, La Crosse

WY
Science Library (1970), University of Wyoming, Laramie
APPENDIX D

Top Ten Reasons to Bury a Building

© Loretta Hall at www.SubsurfaceBuildings.com

Because they are unconventional, underground buildings seem like eccentric creations that would appeal only to an impractical segment of society. But today in the United States, more than 500 public and commercial structures and 5,000 private homes nestle within the earth. At least 20 major subterranean structures are currently under construction or are in the planning process in this country. For what earthly purpose? Read on for a countdown of the ten best reasons.

10. It can't upstage its neighbors if it's built downstairs.
 Putting a new building or an expansion of an existing structure below ground minimizes its impact on views of historic facades or scenery.

9. If heat rises, we're all pretty cool down here.
 Depending on the climate and the use of the underground space, heating and cooling costs can be as much as eighty percent lower than in an aboveground building.

8. It's not nice to fool Mother Nature!
 Compared to aboveground buildings that blanket the earth with a waterproof layer, underground buildings covered with vegetation reduce rainwater runoff and help replenish subsurface water resources. Rooftop plants also improve air quality by converting carbon dioxide to oxygen.

7. If you can't get around the rules, get under them.
 Some zoning rules such as required amounts of parking and landscaped areas are easier to meet if the building's roof can be used to accommodate them. Other surface rules like minimum setbacks from property lines are less applicable to underground buildings.

6. Not a whole lotta' shakin' goin' on.
 Trying to think near an airport or a busy highway? Trying to manufacture precision parts with your factory floors being shaken by nearby traffic or your own machinery? Insulate your building with soil and anchor it in the earth.

5. Don't make a mountain out of a molehill, make a mansion out of a mountain.
 Invest in a bargain-priced lot that's too steep to build on, burrow horizontally into the hillside and enjoy the view!

4. No more handwriting on the wall.
 Because of limited points of entry and small amounts of exposed walls or windows, underground buildings can be more secure from vandals, thieves and even terrorists.

3. Forget battening down the hatches—batten down the building!
 Properly designed underground buildings resist not only wind and fire, but flooding and earthquakes as well.

2. Maintenance is dirt cheap.
 Lack of exposure to wind, sunlight, precipitation, and temperature extremes virtually eliminate the need to reshingle roofs or to maintain exterior walls by repainting, resurfacing or installing aluminum siding.

1. If you can't see the forest for all the trees, how are you ever going to see the building?
 Parks and gardens built on top of underground buildings are great ways to create or preserve open space in downtown areas.
APPENDIX E
Electricity-Generating Geothermal Technologies

Flash Steam Power Plants
Water above 360° F can be used in flash plants to make electricity. Water is sprayed into a tank held at a much lower pressure than the fluid, causing some of the fluid to rapidly vaporize, or ‘flash.’ The vapor then drives a turbine, which drives a generator. If any water remains in the tank, it can be flashed again in a second tank to extract even more energy.

Binary-Cycle Power Plants
Most geothermal areas contain moderate-temperature water (below 400° F). Energy is extracted from these fluids in binary-cycle power plants. Hot water plus a secondary ‘working’ fluid with a much lower boiling point than water—hence a ‘binary’ system—pass through a heat exchanger. Heat from the water causes the secondary fluid to boil (flash to vapor), which then drives the turbines. Because this is a closed-loop system, no pollutants are emitted to the atmosphere.

Dry Steam Power Plants
Steam plants use steam, rather than hot water, that comes from deep underground. The steam goes directly to a turbine which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine. This is the oldest type of geothermal power plant. It was first used at Lardarello in Italy in 1904, and is still very effective. Steam technology is used today at The Geysers in northern California, the world’s largest single source of geothermal power. These plants emit only excess steam and very minor amounts of other gases.

APPENDIX F
Schools Included in this Guide by State
TOTAL: 154 Schools, 42 States, and the District of Columbia

<table>
<thead>
<tr>
<th>AZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona State University</td>
</tr>
<tr>
<td>University of Arizona</td>
</tr>
<tr>
<td>Yavapai College</td>
</tr>
<tr>
<td>CA</td>
</tr>
<tr>
<td>Feather River College</td>
</tr>
<tr>
<td>Harvey Mudd College, Claremont</td>
</tr>
<tr>
<td>Ohlone College</td>
</tr>
<tr>
<td>San Francisco State University</td>
</tr>
<tr>
<td>Stanford University</td>
</tr>
<tr>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>University of California, San Diego</td>
</tr>
<tr>
<td>University of California, Santa Cruz</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>Colorado Northwestern Community College, Craig campus</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>Eastern Connecticut State University</td>
</tr>
<tr>
<td>Fairfield University</td>
</tr>
<tr>
<td>Yale University</td>
</tr>
<tr>
<td>DC</td>
</tr>
<tr>
<td>Georgetown University</td>
</tr>
<tr>
<td>DE</td>
</tr>
<tr>
<td>University of Delaware</td>
</tr>
<tr>
<td>FL</td>
</tr>
<tr>
<td>Florida Southern College</td>
</tr>
<tr>
<td>University of Central Florida</td>
</tr>
<tr>
<td>University of Florida</td>
</tr>
<tr>
<td>GA</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>HI</td>
</tr>
<tr>
<td>University of Hawaii at Manoa</td>
</tr>
<tr>
<td>IA</td>
</tr>
<tr>
<td>Buena Vista University</td>
</tr>
<tr>
<td>Luther College</td>
</tr>
<tr>
<td>Maharishi University of Management</td>
</tr>
<tr>
<td>University of Iowa</td>
</tr>
<tr>
<td>University of Northern Iowa</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>Boise State University</td>
</tr>
<tr>
<td>College of Southern Idaho</td>
</tr>
<tr>
<td>IL</td>
</tr>
<tr>
<td>Columbia College</td>
</tr>
<tr>
<td>Heartland Community College</td>
</tr>
<tr>
<td>John Wood Community College</td>
</tr>
<tr>
<td>Lake Land College</td>
</tr>
<tr>
<td>University of Chicago</td>
</tr>
<tr>
<td>University of Illinois, Chicago</td>
</tr>
<tr>
<td>University of Illinois, Rockford</td>
</tr>
<tr>
<td>University of Illinois, Urbana-Champaign</td>
</tr>
<tr>
<td>Western Illinois University</td>
</tr>
<tr>
<td>IN</td>
</tr>
<tr>
<td>Anderson University</td>
</tr>
<tr>
<td>Ball State University</td>
</tr>
<tr>
<td>Goshen College</td>
</tr>
<tr>
<td>Indiana University</td>
</tr>
<tr>
<td>Purdue University</td>
</tr>
<tr>
<td>University of Notre Dame</td>
</tr>
<tr>
<td>KS</td>
</tr>
<tr>
<td>University of Kansas</td>
</tr>
<tr>
<td>KY</td>
</tr>
<tr>
<td>Berea College</td>
</tr>
<tr>
<td>LA</td>
</tr>
<tr>
<td>Tulane University</td>
</tr>
<tr>
<td>MA</td>
</tr>
<tr>
<td>Boston College</td>
</tr>
<tr>
<td>Harvard University</td>
</tr>
<tr>
<td>Smith College</td>
</tr>
<tr>
<td>University of Massachusetts, Amherst</td>
</tr>
<tr>
<td>Five-College Library Repository (Amherst College, Hampshire College, Mount Holyoke College, Smith College and University of Massachusetts-Amherst)</td>
</tr>
<tr>
<td>MD</td>
</tr>
<tr>
<td>Harford Community College</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>McDaniel College</td>
</tr>
<tr>
<td>St. John’s College</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>Bowdoin College</td>
</tr>
<tr>
<td>Colby College</td>
</tr>
<tr>
<td>University of Maine Farmington</td>
</tr>
<tr>
<td>University of Southern Maine</td>
</tr>
</tbody>
</table>

NOTE: Coverage of programs or initiatives at schools named in this publication ranges from a brief mention to detailed case examples. Page numbers in “From the Ground Up” follow the school name below.
<table>
<thead>
<tr>
<th>MI</th>
<th>Davenport University</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grand Valley State University, Allendale</td>
</tr>
<tr>
<td></td>
<td>Lansing Community College</td>
</tr>
<tr>
<td></td>
<td>Lawrence Technological University</td>
</tr>
<tr>
<td></td>
<td>University of Michigan</td>
</tr>
<tr>
<td>MN</td>
<td>St. John’s University</td>
</tr>
<tr>
<td></td>
<td>University of Minnesota Arboretum</td>
</tr>
<tr>
<td></td>
<td>University of Minnesota, Duluth</td>
</tr>
<tr>
<td></td>
<td>University of Minnesota, Minneapolis/St. Paul</td>
</tr>
<tr>
<td>MO</td>
<td>Drury University</td>
</tr>
<tr>
<td></td>
<td>Park University</td>
</tr>
<tr>
<td>MT</td>
<td>University of Montana</td>
</tr>
<tr>
<td>NC</td>
<td>Mars Hill College</td>
</tr>
<tr>
<td></td>
<td>Warren Wilson College</td>
</tr>
<tr>
<td></td>
<td>Wilson Community College</td>
</tr>
<tr>
<td></td>
<td>University of North Carolina</td>
</tr>
<tr>
<td></td>
<td>Chapel Hill</td>
</tr>
<tr>
<td>ND</td>
<td>Turtle Mountain Community College</td>
</tr>
<tr>
<td>NH</td>
<td>Plymouth State University</td>
</tr>
<tr>
<td>NJ</td>
<td>Drew University</td>
</tr>
<tr>
<td></td>
<td>Princeton University</td>
</tr>
<tr>
<td></td>
<td>Richard Stockton College</td>
</tr>
<tr>
<td>NM</td>
<td>New Mexico Institute of Mining and Technology</td>
</tr>
<tr>
<td></td>
<td>University of New Mexico</td>
</tr>
<tr>
<td>NY</td>
<td>Adelphi University</td>
</tr>
<tr>
<td></td>
<td>Bard College</td>
</tr>
<tr>
<td></td>
<td>College of New Rochelle</td>
</tr>
<tr>
<td></td>
<td>Columbia University</td>
</tr>
<tr>
<td></td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>General Theological Seminary</td>
</tr>
<tr>
<td></td>
<td>Hamilton College</td>
</tr>
<tr>
<td></td>
<td>Ithaca College</td>
</tr>
<tr>
<td></td>
<td>Juilliard School</td>
</tr>
<tr>
<td></td>
<td>New York Law School</td>
</tr>
<tr>
<td></td>
<td>New York University</td>
</tr>
<tr>
<td></td>
<td>Paul Smith’s College</td>
</tr>
<tr>
<td></td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td></td>
<td>Sarah Lawrence College</td>
</tr>
<tr>
<td></td>
<td>Skidmore College</td>
</tr>
<tr>
<td></td>
<td>State University of New York (SUNY), Albany</td>
</tr>
<tr>
<td></td>
<td>State University of New York (SUNY), Brockport</td>
</tr>
<tr>
<td></td>
<td>State University of New York (SUNY), Dutchess Community College</td>
</tr>
<tr>
<td></td>
<td>State University of New York (SUNY), Fredonia</td>
</tr>
<tr>
<td></td>
<td>State University of New York (SUNY), Sullivan County Community College</td>
</tr>
<tr>
<td></td>
<td>Vassar College</td>
</tr>
<tr>
<td>OH</td>
<td>Bluffton College</td>
</tr>
<tr>
<td></td>
<td>Cleveland Institute of Music</td>
</tr>
<tr>
<td></td>
<td>Cleveland State University</td>
</tr>
<tr>
<td></td>
<td>Oberlin College</td>
</tr>
<tr>
<td></td>
<td>Medical College of Ohio</td>
</tr>
<tr>
<td></td>
<td>Ohio State University</td>
</tr>
<tr>
<td></td>
<td>Sinclair Community College</td>
</tr>
<tr>
<td></td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>OK</td>
<td>Oklahoma City Community College</td>
</tr>
<tr>
<td></td>
<td>Oklahoma State University</td>
</tr>
<tr>
<td></td>
<td>Oklahoma State University Institute of Technology at Okmulgee</td>
</tr>
<tr>
<td></td>
<td>Rogers State University</td>
</tr>
<tr>
<td></td>
<td>University of Oklahoma</td>
</tr>
<tr>
<td>OR</td>
<td>Oregon Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Portland State University</td>
</tr>
<tr>
<td></td>
<td>University of Oregon</td>
</tr>
<tr>
<td>PA</td>
<td>Allegheny College</td>
</tr>
<tr>
<td></td>
<td>Bryn Mawr College</td>
</tr>
<tr>
<td></td>
<td>California University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td></td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Mercyhurst College</td>
</tr>
<tr>
<td></td>
<td>Mercyhurst College, North East</td>
</tr>
<tr>
<td></td>
<td>University of Pennsylvania Morris</td>
</tr>
<tr>
<td></td>
<td>Arboretum</td>
</tr>
<tr>
<td></td>
<td>West Chester University</td>
</tr>
<tr>
<td>RI</td>
<td>Brown University</td>
</tr>
<tr>
<td>SC</td>
<td>Clemson University</td>
</tr>
<tr>
<td></td>
<td>Furman University</td>
</tr>
<tr>
<td></td>
<td>Medical University of South Carolina</td>
</tr>
<tr>
<td></td>
<td>University of South Carolina</td>
</tr>
<tr>
<td>TN</td>
<td>Lipscomb University</td>
</tr>
<tr>
<td>TX</td>
<td>Rice University</td>
</tr>
<tr>
<td></td>
<td>Texas Tech University</td>
</tr>
<tr>
<td></td>
<td>University of Houston</td>
</tr>
<tr>
<td>UT</td>
<td>Brigham Young University</td>
</tr>
<tr>
<td></td>
<td>University of Utah</td>
</tr>
<tr>
<td>VA</td>
<td>University of Virginia</td>
</tr>
<tr>
<td></td>
<td>Virginia Tech University</td>
</tr>
<tr>
<td>VT</td>
<td>Champlain College</td>
</tr>
<tr>
<td>WA</td>
<td>Pacific Lutheran University</td>
</tr>
<tr>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td>WI</td>
<td>College of Menominee Nation</td>
</tr>
<tr>
<td></td>
<td>Northland College</td>
</tr>
<tr>
<td></td>
<td>University of Wisconsin-Green Bay</td>
</tr>
<tr>
<td></td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td></td>
<td>Western Wisconsin Technical College</td>
</tr>
<tr>
<td>WY</td>
<td>Laramie County Community College</td>
</tr>
<tr>
<td></td>
<td>University of Wyoming</td>
</tr>
</tbody>
</table>
NOTE: Details and text for many of the campus geothermal stories were drawn in part from three articles by Paul Tolmé previously published by the National Wildlife Federation in ClimateEdu: News for the Green Campus. A fourth ClimateEdu article by Maryruth Priebe is also an excellent resource.

ENDNOTES

All websites were accessed from March 2010 to January 2011.

ClimateEdu articles on geothermal energy by Paul Tolmé

ClimateEdu article on geothermal energy by Maryruth Belsey Priebe

Personal communication with John Lund, former director of the Oregon Institute of Technology Geo-Heat Center, 2009.

Ibid.

University of Oregon, Lorry I. Lokey Laboratories building—http://pmr.uoregon.edu/current-uo-news/archive/2008/february/uo-dedicates-nanoscience-research-center

http://www.lakeland.cc.il.us/green/geothermal_energy.html; Renewable Energy News, Control Technology & Solutions and Lake Land College—
http://www.lakeland.cc.il.us/green/RenewableEnergyNews%209_22_08.pdf; Personal communication with Raymond Rieck, Vice President for Business Services, March 2010.

http://cms.bsu.edu/About/Geothermal/FAQ.aspx; “Eyes of the nation and the world on Ball State as geothermal project moves ahead,” March 29, 2010—
http://www.bsu.edu/news/article/0,1370,7273-850-63958,00.html; “Sen. Lugar leads off country's largest geothermal energy project,” May 8, 2009—

26 Harvard University. Geothermal Energy Projects at Harvard (includes projects table)—
http://green.harvard.edu/node/412; Ground Source Heat Pumps at Harvard: Lessons Learned, a 52-slide presentation, 2008—
http://www.green.harvard.edu/sites/default/files/attachments/oe/GSHPSharable3-08.pdf; Personal communication with Nathan Gauthier, Assistant Director, Harvard Office of Sustainability.

28 Grid Neutral: Electrical Independence for California Schools and Community Colleges—

https://my.hamilton.edu/news/more_news/display.cfm?ID=10233; Campus Sustainability website: Green buildings—

30 Northland College. Personal communication with Clare Hintz, Sustainability Coordinator and Rick Waligora, Director, Facilities Maintenance.
GOING UNDERGROUND ON CAMPUS: Tapping the Earth for Clean, Efficient Heating and Cooling
39 Richard Stockton College. ATES system map—
http://intraweb.stockton.edu/eyos/energy_studies/content/docs/ATES_map.pdf

40 Cornell University. Cornell’s Lake Source Cooling Project—
http://energyandsustainability.fs.cornell.edu/util/cooling/production/lsc/default.cfm;
Energy Use: Lake Source Cooling—
http://www.sustainablecampus.cornell.edu/energy/lakesource.cfm; LSC Annual Monitoring
Reports—
http://energyandsustainability.fs.cornell.edu/util/cooling/production/lsc/annualreports.cfm;
Cornell Climate Action Plan—
http://www.sustainablecampus.cornell.edu/docs/cap_report3-22-10-lo%20res.pdf; “Advocating
to Institutionalizing Sustainability at Cornell University,” by Dean Koyanagi, in The Green

41 Oregon Institute of Technology. OIT Geo-Heat Center— http://geoheat.oit.edu/index.htm;
OIT Geothermal System Improvements, August 1996—
http://geoheat.oit.edu/bulletin/bull17-3/art5.pdf; Our Sustainable Campus—
http://www.oit.edu/sustainable-OIT/campus; First geothermal combined heat and power
plant—http://www.oit.edu/faculty-staff/president/the-maples-report/april-may-2010;
“Through a Fault of Its Own, Oregon Institute of Technology Will Produce Power,” by Scott
Personal communication with John Lund, former director of the OIT Geo-Heat Center,
and Toni Lund, Director, OIT Geo-Heat Center.

42 “Hot and Steamy: Ground-Source on Campus,” by Maryruth Belsey Priebe, September 15,

43 Oregon Institute of Technology. Same as above.

44 Underground Building News—

45 Park University, McAffee library. Personal communication with Bobbi Shaw, McAffee
Library staff.

46 The University of Arizona, Integrated Learning Center. “Greening a Desert Campus,” by
Will Gosner, The University of Arizona Alumnus magazine, Fall 2008—
http://www.arizonalumni.com/Alumnus/f08/green.html; Photos & floorplan—
http://www.ilc.arizona.edu/features/features.htm; Personal communication with Grant
McCormick, Campus Planner, Campus and Facilities Planning, Glenn McCreedy, Marketing
Coordinator, External Relations, and Brian Dolan, ILC project manager.

47 Bowdoin College, Museum of Art. “Bowdoin College Museum of Art to Re-Open October 14,
2007”— http://www.bowdoin.edu/news/archives/1bowdoincampus/003897.shtml; Personal
communication with Suzanne Bergeron, Assistant Director for Museum Operations, and
Don Borkowski, Capital Projects Manager.

48 University of Oregon, Lokey Laboratories. “UO Dedicates Nanoscience Research Center”—
http://giving.uoregon.edu/news/uo-dedicates-nanoscience-research-center; Personal
communication with Fred Tepfer, campus planner.

University of Wisconsin-Green Bay, Instructional Services & Student Services buildings. Personal communication with John Stoll, Austin E. Cofrin Professor of Management and co-Director of the Environmental Management and Business Institute, Les Raduenz, former Director of Facilities, and Paul Pinkston, Senior Facilities Planning Specialist.

St. John’s University, Seton Apartments. Seton Apartments homepage http://www.csbsju.edu/sjureslife/halls/seton.htm; Seton Apartments articles from the 1980s— http://www.csbsju.edu/sjarchives/buildings/buildings_seton.htm; Cross section drawing from “Earth-Sheltered Apartments: Student housing tucked into the Minnesota soil has had few problems, but energy performance lags expectations.”— Solar Age, Dec. 1984, by Jerry Germer; Personal communication with Gary Jorgensen, Buildings and Facilities Manager.

A ton is an indexing measure based on the thermal energy required to melt a ton of ice in 24 hours; this requires 288,000 BTUs in 24 hours, which thereby yields an index of 12,000 BTU-hours of thermal exchange per “ton.”
“Geothermal Heat Pumps Public Policy Update,” by Daniel Ellis, October 2010—

Colleges Expending Energy on New Initiatives, Community College Week, March 2009—

Energy Center of Wisconsin— http://www.ecw.org

Occupational Information Network (O*NET). The Green Economy—

USA Underground Buildings—
http://www.subsurfacebuildings.com/USAUndergroundBuildings.html

“Top Ten Reasons to Bury a Building,” by Loretta Hall, on Underground Buildings: Architecture and Environment website—
http://www.subsurfacebuildings.com/TopTenReasonstoBuryaBuilding.html
The National Wildlife Federation thanks The Kendeda Fund for support of this and other Campus Ecology projects.

Partners

• APPA: Leadership in Educational Facilities
• Geothermal Energy Association (GEA)
• Geothermal Exchange Organization (GEO), the non-profit trade association of the geothermal heat pump industry

Other Partners

• Jobs for the Future
• Energy Action Coalition

National Wildlife Federation
11100 Wildlife Center Dr., Reston, VA 20190
703-438-6000 • 1-800-822-9919 • campus@nwf.org • www.campusecology.org