Grasping for Solutions

While many states are failing to protect rivers and watersheds from polluted runoff, some communities are taking matters into their own hands

  • Joby Warrick
  • Apr 01, 2001
On bright days when the Clinch River in southwestern Virginia runs clear, you can see signs of rebirth strewn along its rocky bottom like so many black pearls. Braven Beaty, an aquatic ecologist in rubber waders, pokes an arm into the mountain stream’s icy swirl and pulls out a hopeful omen.

"Black sandshell," he calls out, rotating a small mussel between fingertips. "A threatened species. I’ve never seen one this far north."

The scientist returns the mussel to its place and scoops up another, and then another, reciting the names of the species as he finds them: fine-rayed pigtoe; kidneyshell; rough rabbitsfoot. In half an hour, he finds 12 different species in a spot no bigger than a carport.

The variety is striking, even for a stream that boasts more varieties of freshwater mussels than any waterway on Earth. But equally striking are the absences: Once there were as many as 60 types of mussels in this Appalachian river before pollution and silt from a century of logging and coal mining wiped out a third of them—forever.

The Clinch’s mussels are slowly coming back, but so far recovery is limited to areas protected by a fragile alliance of conservationists and property owners working to keep sediments out of the water. "It’s hard to get people to understand why mussels are important," says Beaty. "It’s even harder to go to landowners and say, ‘You’re part of the problem.’"

Drawing a connection between land and water is crucial, not only for the Clinch but also for hundreds of other waterways around the country. In an era when environmental regulations have stemmed the flow of pollutants from many U.S. factories, rivers are straining under a burden of chemicals and silt from thousands of smaller sources—everything from poorly managed logging projects and animal waste from factory farms to motor oil off parking lots and weed killers from suburban lawns.

Such diffuse, or nonpoint, pollution is now the Number One cause of contamination in American waterways, fouling an estimated 1.3 million miles of streams and rivers. It is the main reason nearly 40 percent of the nation’s lakes, rivers and estuaries still are not clean enough for swimming or fishing, according to a 1997 Environmental Protection Agency (EPA) analysis.

"The magnitude of the problem just hasn’t been recognized," says Michael Murray, an NWF environmental chemist and staff scientist, "and as a result we’re seeing nonpoint pollution getting even worse in a lot of areas of the country." The situation, he adds, is compounded in many areas by air pollution, which contaminates waterways with dioxins and other chemicals emanating from distant sources.

An NWF study released last spring reported that states simply are not enforcing the law when it comes to preventing diffuse pollution from washing into streams (see below). "The failure is inexcusable and the problems are preventable," concludes the report. "The tools for cleaning up polluted runoff and contaminated rain are there, but most states simply aren’t using them aggressively enough."

For states, the primary legal weapon against nonpoint pollution is called the Total Maximum Daily Load (TMDL) restoration program. Created with the passage of the federal Clean Water Act in 1972, the TMDL provision requires regulators to consider all sources of pollution across a river’s watershed, or drainage basin.

A watershed is the area of land from which rain or melting snow drains into a river. It can be as small as a few hundred acres—typical of a small stream—or it can encompass thousands of square miles and several states, as in the case of the Mississippi River. In all watersheds, the rainwater that replenishes the river also brings wastes that can damage it. Unless preventive steps are taken, pollutants can be swept up in storm runoff and deposited in the river itself.

A TMDL plan helps states identify these hidden problems. The program starts with careful monitoring of water quality by state regulators, along with an investigation of where the pollutants are coming from. Next, the states set limits for each type of pollution—the "total maximum daily load" a river can safely carry. When a river exceeds the limit for a chemical, the state crafts a pollution-reduction strategy that divides the cuts among both point and nonpoint sources of the chemical. States have discretion in determining how the actual allocations are made, with the only requirement that the reductions result in attainment of water-quality standards.

"This TMDL approach makes a clean-up effort more effective and fairer to all parties," says Murray. It can also yield surprising insights: In the Christina River Basin near Wilmington, Delaware, for example, officials discovered that farming and suburban sprawl had eclipsed the state’s homegrown chemical industry as the leading source of the river’s problems. Runoff from farms, lawns and parking lots alone destroyed or damaged fish habitats in nearly 40 percent of the river’s tributaries, according to a TMDL investigation.

More than two-thirds of the nation’s state governments still lack a workable TMDL program, NWF found. "Not one of the 50 states has done what the law requires," it said. The result: Despite a public perception of steadily cleaner rivers and lakes, progress has stalled in many areas and has actually reversed in others. Some examples:

Fertilizers and animal waste from factory livestock farms have helped trigger an unprecedented number of algal blooms, destructive growth spurts that clog waterways and suffocate fish. Most notorious were outbreaks of toxic algae, including the organism Pfiesteria piscicida, blamed for killing a billion fish in coastal North Carolina.

Increased monitoring and continued mercury contamination in lakes and rivers has led to a doubling of fish-consumption advisories (warnings against consuming certain fish) from 1993 to 1998. Much of the mercury originates as smokestack emissions and falls to Earth with rain and snow.

Farm chemicals from states in the Midwest have flowed down the Mississippi River, helping feed a growing "dead zone" of barren, oxygen-depleted water in the Gulf of Mexico. The size of the dead zone ballooned in the early 1990s and grew to 7,500 square miles before shrinking last summer due to drought in the plains states.

Even where the problems are not so dramatic, chemicals in polluted runoff have created the equivalent of a low-grade toxic-waste spill that now extends to virtually every river and stream in the country. In a landmark survey completed in 1999, the U.S. Geological Survey (USGS) found at least one pesticide in almost every water and fish sample it collected. In fact, more than half the streams tested in the agency’s National Water Quality Assessment Program contained at least five pesticides. The levels of these individual contaminants were usually within EPA safety limits, but the combinations and ubiquity of the chemicals raised a troubling question: Do chronic, low doses of multiple pesticides add up to a greater risk for wildlife and people? "We simply don’t know the effects of sustained exposure to mixtures of chemicals on an aquatic ecosystem," says USGS scientist Bob Gilliom.

The seesaw fortunes of the Clinch River’s mussels are a case study in how changes on land can impact river species and throw entire ecosystems out of balance. Geology and geography conspired to make the waterway one of the world’s great habitats for mussels. Over time, the creatures became the biological cornerstone for a large and diverse wildlife community in and around the Clinch that includes more than 400 rare plants, animals and insects.

However, for an animal that lives in a rock-hard vault and can survive up to 60 years, the mussel is extraordinarily delicate. "Mussels were once 20 percent of the river’s entire biomass," notes Beaty, who conducts research for The Nature Conservancy.

By the late 1980s, the number of mussel species in the Clinch had dropped from 60 to 40, with 26 of the remaining species now facing a serious threat of extinction, scientists say. "The mussels are the piece of the puzzle that disappears first when things start to go wrong," Beaty says. "The good news is, if it’s early enough, even if you lose some of the species, there’s still a chance you can save the ecosystem."

Undoing the damage caused by nonpoint pollution is never as easy as closing a factory or turning a faucet. The modest recovery of the Clinch River and its mussels is the result of a decade of work by dozens of groups to neutralize, one by one, the many small problems that caused the river’s water quality to worsen in the first place. Farmers in the area, for instance, with financial assistance from government agencies, have begun fencing in their pastures to keep livestock out of streams. The same sort of slow-but-sure approach is working to help prevent runoff in rivers elsewhere.

In Boston, federal and local leaders have seen a turnaround in the polluted Charles River in the past five years, through the use of TMDL plans and a crackdown on communities with outdated stormwater systems. The Charles is one of the nation’s most heavily used recreational rivers. Yet in 1995, authorities rated it too dirty for swimming 81 percent of the time.

An aggressive cleanup effort launched that same year took aim at illegal sewage hookups and storm runoff from more than 30 towns along the river’s banks. A study of the Charles, initiated in 1994 by the Charles River Watershed Association (CRWA), proved conclusively that point-source pollution remained a serious problem in the river. As a result, the EPA ordered local governments to begin a comprehensive search for pollution sources, which discovered hundreds of them. "Over the years, with municipal budgets stretched, it’s been easy to allow funds for sewer and storm-drain maintenance to disappear," says CRWA Executive Director Bob Zimmerman.

The payoff for such efforts came last summer, when the Charles fell short of federal swimming standards only 35 percent of the time and earned an above-average rating from the EPA. "Removal of point sources has made a difference," says Zimmerman. "Getting the river clean the rest of the way, however, is likely to be more difficult."

In northwestern Montana, residents along tiny Elk Creek were moved to action after the stream’s renowned cutthroat trout began disappearing. The problem: The fish’s spawning and feeding grounds were seriously damaged by runoff from nearby development and streambed erosion.

The Elk’s fast waters run through mountain gorges and valleys that traditionally were blanketed with a dense covering of evergreens. The trees provided shade, organic matter and shelter for trout, whose size and numbers were legendary. But by the mid-1990s, developers, farmers and loggers had stripped many of the valleys of their trees. The Elk’s denuded banks rapidly eroded, and the creek’s famously clear water turned brown with sediment. As the fish became scarcer, watershed residents began looking for ways to restore the Elk.

Starting with only a few dozen volunteers, the stream’s boosters planted thousands of trees and shored up miles of riverbanks with retention walls made of tree stumps. Today the trout are rebounding, and Elk Creek has become only the third waterway in state history to graduate from Montana’s official list of "impaired" waterways.

"None of us were environmental maniacs, but we all wanted a healthy creek," says local resident Mike Miller. "What we kept hearing was we had to look at the entire watershed. We had to make sure we didn’t have problems upstream that would blow out what we were doing downstream."

For other watersheds, cleanup progress has been maddeningly slow. Neighbors of Lake Tahoe on the California-Nevada border, for example, still have little to cheer about after nearly 40 years of efforts to restore the lake’s famous crystal clarity.

Tahoe is North America’s largest alpine lake and the eighth-deepest freshwater body in the world. A century ago, its waters were so pure a visitor could see objects at depths of more than 100 feet. But runaway development in recent decades brought changes that sullied the lake’s waters. Today the maximum depth for visibility has dropped to 69 feet and is worsening at a rate of a foot a year. A study last year warned the lake’s clarity could be "irreversibly doomed," and many of its fish and wildlife lost, without a dramatic restoration effort.

Attempts to curb runoff at Tahoe are now underway. Local authorities from communities along the lake have adopted some of the nation’s toughest curbs on runoff, requiring landowners to, for example, install water traps and overflow tanks to prevent rainwater from leaving their property. But even with such measures, it may be years before significant improvements are seen.

"There’s no easy fix for these problems," says Murray. "But in a lot of communities, people are coming up with workable solutions. It makes you wonder: What’s holding back the states from doing the same?"

NWF Priority: Safeguarding America’s Watersheds


The above map shows the results of an NWF assessment conducted last year of state efforts to control nonpoint pollution using the watershed-restoration provision of the Clean Water Act. In the study, NWF assigned a grade of "D" or "F" to 38 states. A dozen others earned a "C" or "B," and no state received an "A." "There are other tools to control runoff," says Kari Dolan, an NWF water resources specialist. "However, because many sources of polluted runoff are industries with political might, some states lack the leadership to confront them. That is why the Clean Water Act restoration provision is essential."

The study is part of NWF’s ongoing Saving Our Watersheds program, designed to provide citizens with an understanding of how watersheds work and what tools are available to help protect local lakes, rivers and estuaries. NWF currently is working with activists and scientists on specific watershed projects throughout the country, including:

In Vermont and New York, NWF is part of a team creating a cleanup plan for a polluted river in the Lake Champlain Basin. NWF also initiated an effort to reduce mercury and polluted runoff in the lake.
In Alaska, NWF is working with Native organizations and other environmental groups to defend the vast Copper River Delta against logging, mining and other water-quality threats.
In Georgia, NWF played a key role in forming a citizen-led coalition addressing problems in the Upper Suwanee River Watershed.
In Minnesota, NWF is part of a unique partnership between industries, municipalities and conservation groups that is developing solutions to stem mercury pollution in the St. Louis River.
In Delaware, NWF and its affiliate, the Delaware Nature Society, are providing information to citizens who are concerned about protecting the Christina River Basin. The program includes training volunteers to conduct periodic water monitoring.
Joby Warrick is a staff writer for The Washington Post.

Get Involved

Where We Work

More than one-third of U.S. fish and wildlife species are at risk of extinction in the coming decades. We're on the ground in seven regions across the country, collaborating with 52 state and territory affiliates to reverse the crisis and ensure wildlife thrive.

Learn More
Regional Centers and Affiliates